
An Introduction to the
Thrust Parallel Algorithms Library

What is Thrust?

 High-Level Parallel Algorithms Library

 Parallel Analog of the C++ Standard Template Library (STL)

 Performance-Portable Abstraction Layer

 Productive way to program CUDA

Example
#include <thrust/host_vector.h>

#include <thrust/device_vector.h>

#include <thrust/sort.h>

#include <cstdlib>

int main(void)

{

 // generate 32M random numbers on the host

 thrust::host_vector<int> h_vec(32 << 20);

 thrust::generate(h_vec.begin(), h_vec.end(), rand);

 // transfer data to the device

 thrust::device_vector<int> d_vec = h_vec;

 // sort data on the device

 thrust::sort(d_vec.begin(), d_vec.end());

 // transfer data back to host

 thrust::copy(d_vec.begin(), d_vec.end(), h_vec.begin());

 return 0;

}

Easy to Use

 Distributed with CUDA Toolkit

 Header-only library

 Architecture agnostic

 Just compile and run!
$ nvcc -O2 -arch=sm_20 program.cu -o program

Why should I use Thrust?

Productivity

 Containers

— host_vector

— device_vector

 Memory Mangement

— Allocation

— Transfers

 Algorithm Selection

— Location is implicit

// allocate host vector with two elements

thrust::host_vector<int> h_vec(2);

// copy host data to device memory

thrust::device_vector<int> d_vec = h_vec;

// write device values from the host

d_vec[0] = 27;

d_vec[1] = 13;

// read device values from the host

int sum = d_vec[0] + d_vec[1];

// invoke algorithm on device

thrust::sort(d_vec.begin(), d_vec.end());

// memory automatically released

Productivity

 Large set of algorithms

— ~75 functions

— ~125 variations

 Flexible

— User-defined types

— User-defined operators

Algorithm Description

reduce Sum of a sequence

find First position of a value in a sequence

mismatch First position where two sequences differ

inner_product Dot product of two sequences

equal Whether two sequences are equal

min_element Position of the smallest value

count Number of instances of a value

is_sorted Whether sequence is in sorted order

transform_reduce Sum of transformed sequence

Thrust

CUDA
C/C++

CUBLAS,
CUFFT,

NPP

STL

CUDA
Fortran

C/C++

OpenMP

TBB

Interoperablility

Portability

 Support for CUDA, TBB and OpenMP

— Just recompile!

GeForce GTX 280

$ time ./monte_carlo

pi is approximately 3.14159

real 0m6.190s

user 0m6.052s

sys 0m0.116s

NVIDA GeForce GTX 580 Core2 Quad Q6600

$ time ./monte_carlo

pi is approximately 3.14159

real 1m26.217s

user 11m28.383s

sys 0m0.020s

Intel Core i7 2600K

nvcc -DTHRUST_DEVICE_SYSTEM=THRUST_HOST_SYSTEM_OMP

Backend System Options

Device Systems

THRUST_DEVICE_SYSTEM_CUDA

THRUST_DEVICE_SYSTEM_OMP

THRUST_DEVICE_SYSTEM_TBB

Host Systems

THRUST_HOST_SYSTEM_CPP

THRUST_HOST_SYSTEM_OMP

THRUST_HOST_SYSTEM_TBB

Multiple Backend Systems

 Mix different backends freely within the same app

thrust::omp::vector<float> my_omp_vec(100);

thrust::cuda::vector<float> my_cuda_vec(100);

...

// reduce in parallel on the CPU

thrust::reduce(my_omp_vec.begin(), my_omp_vec.end());

// sort in parallel on the GPU

thrust::sort(my_cuda_vec.begin(), my_cuda_vec.end());

Thrust_sort

 Open exercises/cuda/thrust_sort/kernel.cu

 Code should build without modification

 What is performance of GPU versus CPU code?

Potential Workflow

• Impleme

nt

Applicati

on with

Thrust

• Profile

Applicati

on

• Specializ

e

Compone

nts as

Necessar

y

Thrust
Implementation

Profile
Application

Specialize
Components

Application

Bottleneck

Optimized Code

Robustness

 Reliable

— Supports all CUDA-capable GPUs

 Well-tested

— ~850 unit tests run daily

 Robust

— Handles many pathological use cases

Openness

 Open Source Software

— Apache License

— Hosted on GitHub

 Welcome to

— Suggestions

— Criticism

— Bug Reports

— Contributions

thrust.github.com

Resources

 Documentation

 Examples

 Mailing List

 Webinars

 Publications

thrust.github.com

GPU Technology Conference 2013
March 18-21 | San Jose, CA
 Why attend GTC?

GTC advances global awareness of the dramatic changes

we’re seeing in science and research, graphics, cloud

computing, game development, and mobile computing,

and how the GPU is central to innovation in all areas.

Ways to participate

 Submit a Research Poster – share your work and gain

 exposure as a thought leader

 Register – learn from the experts and network with your peers

 Exhibit/Sponsor – promote your organization as a key player in

 the GPU ecosystem

Visit www.gputechconf.com

