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A general geometry gyro-kinetic model for particle simulation of plasma turbulence in tokamak

experiments is described. It incorporates the comprehensive influence of noncircular cross section,

realistic plasma profiles, plasma rotation, neoclassical �equilibrium� electric fields, and Coulomb

collisions. An interesting result of global turbulence development in a shaped tokamak plasma is

presented with regard to nonlinear turbulence spreading into the linearly stable region. The mutual

interaction between turbulence and zonal flows in collisionless plasmas is studied with a focus on

identifying possible nonlinear saturation mechanisms for zonal flows. A bursting temporal behavior

with a period longer than the geodesic acoustic oscillation period is observed even in a collisionless

system. Our simulation results suggest that the zonal flows can drive turbulence. However, this

process is too weak to be an effective zonal flow saturation mechanism. © 2006 American Institute

of Physics. �DOI: 10.1063/1.2338775�

I. INTRODUCTION

Understanding turbulence and associated transport in to-

roidal plasmas
1–3

is one of the key issues in magnetic fusion

research. In the past decade, as computer resources rapidly

increased and advanced, numerical algorithms were devel-

oped, and significant progress was made for this long-

standing complicated issue through computer simulation

based on various approaches.
4–15

Among them, the first-

principles based gyro-kinetic particle approach
16

has been

widely employed. Simulation studies carried out with the

gyro-kinetic toroidal code �GTC�8
have been among the most

productive. GTC was originally developed to focus on fun-

damental nonlinear turbulence physics. It is a full-torus glo-

bal code using a global field-line-following mesh and a real

space field solver. Global turbulence simulations for toroidal

plasmas are highly demanding for the following reasons: �i�
the turbulence-generated zonal flow contains radial scales as

large as the system size, even though the turbulence itself is

on the much smaller scale of the gyro-radius; �ii� the equi-

librium E�B shear flow, which also plays an important role

in determining turbulence levels, typically has the large scale

size of the plasma minor radius; and �iii� turbulence spread-

ing to the linearly stable zone results in nonlocal transport,

which is a truly global phenomenon. To pose the simplest

problem while keeping the important global physics proper-

ties, a simplified model was utilized in the previous simula-

tions, with simple magnetic geometry with a large-aspect-

ratio circular concentric cross section and neglect of the

effect of radial variation of pressure. This proved to be an

effective means of gaining basic insights into the complexity

of the toroidal turbulence system. As a result, the previous

simulation studies have led to a number of important under-

standings with regard to zonal flow effects, transport scalings

with collisionality and device size, turbulence spreading,

etc.
8,17–21

While such a simplified model is a useful tool to

separate and clarify fundamental physics issues, more realis-

tic features are needed as the research moves forward. Par-

ticularly for simulating turbulence phenomena in tokamak

experiments, a more comprehensive model is needed that

consistently incorporates the influence of general geometry,

realistic plasma profiles, plasma flow, neoclassical equilib-

rium, Coulomb collisions and other features. In this paper we

present such a model with emphasis on the general geometry

capability, which has now been implemented based on GTC

architecture. The general geometry simulation capability has

been interfaced with TRANSP,
22

a widely used experimental

data analysis software tool for specifying experimental

plasma profiles of temperature, density and toroidal angular

velocity, and also with various numerical magnetohydrody-

namic �MHD� equilibrium codes, including the JSOLVER
23

and ESC
24

codes.

Global turbulence fluctuation levels and associated trans-

port are determined by both local and nonlocal physics. Tur-

bulence propagation in the radial direction results in trans-

port nonlocality which should be addressed by global

simulation. The new capability is applied to shaped plasmas

with DIII-D
25

geometry to examine the ion temperature gra-

dient �ITG� turbulence spreading phenomena and the global

turbulence evolution process. We also investigate the nonlin-

ear interplay between turbulence and zonal flow, which is

essentially a local process. As an attempt to understand the

nonlinear zonal flow dissipation, which is needed to saturate

zonal flow and to explain the mutual self-regulation observed

in collisionless simulations, we study the process of zonal

flow driving turbulence. Our simulation results suggest that

the coupling of zonal flows to turbulence and associated en-

ergy transfers are much weaker, compared to the opposite

process in ITG turbulence.

The rest of the paper is organized as follows. The gen-
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eral geometry simulation model is described in Sec. II. We

describe the coordinate system and mesh construction, with

consideration of shaped equilibrium geometry and strong

nonuniformity of the global temperature profile; we detail

the calculation of the gyro-kinetic transformation of fluctua-

tions between particle position and guiding center position in

generalized geometry; the system of basic gyro-kinetic equa-

tions used in this generalized simulation model is also pre-

sented. Our simulation results are presented in Sec. III. These

include linear and nonlinear ITG benchmarks in a simple

geometry, global turbulence evolution in a DIII-D-shaped

plasma, and turbulence self-regulation in collisionless

plasma. Concluding remarks are summarized in Sec. IV.

II. GENERAL GEOMETRY GYRO-KINETIC PARTICLE
SIMULATION MODEL

A. Coordinate system and mesh construction

Magnetic flux coordinates, in which the radial coordinate

labels magnetic surfaces, are generally used for toroidal sys-

tems and associated with MHD equilibria. Our gyro-kinetic

simulation in principle can use arbitrary flux coordinates

with straight field lines. In the flux coordinates, the global

field-line-following mesh, which possesses the highest effi-

ciency by capturing the flute-type character of the drift wave

turbulence in toroidal plasmas, can be easily constructed. A

preferable flux coordinate can be chosen in terms of different

requirements. A symmetric coordinate system in which the

toroidal angle � is chosen to be the azimuthal angle of cy-

lindrical coordinates is preferable in many cases. These co-

ordinates are relatively uniform compared to others that have

been previously used, and are advantageous for constructing

a relatively regular mesh in real space for strongly shaped

plasmas. It also facilitates straightforward visualization with

the poloidal plane defined with the physical angle �. The

radial coordinate is defined as r=�� /�e, where � and �e are

the toroidal flux and its value on the plasma boundary, re-

spectively. This same radial coordinate is widely used in the

experimental community.

Because of the flute-type character of drift wave turbu-

lence in toroidal plasmas, with k� �k�, where k� and k� are

the parallel and perpendicular wave numbers, respectively,

GTC uses a field-line-following mesh, which shows high ef-

ficiency for calculating the turbulent field. Note that the

field-line-following mesh does not possess toroidal symme-

try. On the other hand, in tokamak geometry, the toroidal

symmetry is broken as fluctuations associated with microin-

stability develop. Each mode nonlinearly sees an asymmetric

equilibrium that consists of the MHD equilibrium, which is

symmetric, and the fluctuations of other modes, which are

asymmetric. In our simulation, the MHD equilibrium is rep-

resented by a two-dimensional �2-D� symmetric mesh, and

the fluctuations are represented using a �toroidally nonsym-

metric� field-line-following mesh that best represents the na-

ture of the mode structure. For drift wave turbulence, the

spatial scale length in the perpendicular direction is generally

in correlation with the local gyro-radius � j ��T j, which may

vary substantially from the core to the edge of the plasma.

For instance, it is common in National Spherical Torus

Experiment �NSTX�26
plasmas that the ion temperature

changes from �keV in the core to �10 eV near the separa-

trix region at the plasma edge. Therefore, for a global simu-

lation, which includes the entire radial domain, it is impor-

tant to use a nonuniform grid with the grid size in the

perpendicular direction correlated with the local gyro-radius

for improved spatial resolution and efficiency. To this end,

we rescale the radial coordinate by defining � as follows:

d�

dr
= �Tc/Ti�r� , �1�

where Tc is the temperature at a reference radial location.

Working with the new coordinate �, we use an evenly spaced

radial grid, which offers great convenience for frequent op-

erations such as particle sorting, charge deposition, gather-

ing, etc. This allows the grid size in real space to be corre-

lated with the local gyro-radius: �r��Ti�r� /Tc. In the

poloidal direction, the grid size ���r� is uniform on a flux

surface, while varying over different flux surfaces. The grid

size ���r� is determined so as to make the poloidal arc

length �l� near the midplane correlated with �i. An example

of such a grid on the poloidal plane �=0 is shown in Fig. 1.

Generally, a two-dimensional mesh on the �=0 plane is set

up first. A three-dimensional mesh is constructed by follow-

ing each �approximate� field line, which starts at a grid point

on the �=0 plane and has q̄�r��−�=constant, with q̄ slightly

changed from the usual safety factor q�r�, so that the ap-

proximate field lines will lead back to one of the grid points

on the �=0 plane. Two methods for enforcing toroidal peri-

odicity have been implemented. One method is to map the

grid at 	=0 to the grid at 	=2
 using interpolation, which

results in some spatial damping. Another method is to allow

the grid to depart slightly from the magnetic field lines in

order to match the grid points, which requires a chain rule in

calculating the parallel derivatives. Interpolation and deposi-

tion, which transfer information between particles and grid

points, are performed within a “flux-tube type” of cell

twisted along the field line rather than a toroidally symmetric

FIG. 1. �Color online� An example of a nonuniform grid on a poloidal plane

showing grid size in correlation with local ion gyro-radius.
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cell. This has advantages due to separating the short spatial

scale in the perpendicular direction and the long spatial scale

in the parallel direction. In the field-line-following mesh sys-

tem, the number of “toroidal grids” �i.e., the number of po-

loidal planes� is actually the number of grids in the parallel

direction within one toroidal circuit. In our simulation, the

number of toroidal grids Nt is chosen to give adequate reso-

lution for the parallel structure of the modes. In the perpen-

dicular direction, adequate resolution is achieved by using a

much denser mesh on each poloidal plane with a perpendicu-

lar grid size of �i scale. The allowed maximum toroidal

wave-number is related to both the toroidal and poloidal

grids. The key point is that the poloidal mesh makes a sig-

nificant contribution to the resolution in the toroidal direc-

tion. This problem was addressed in detailed by Scott.
27

Ba-

sically, the maximum toroidal mode number that can be

resolved is n=NINT�m /q�+Nt /2 for each poloidal mode

number m, where NINT�m /q� is the nearest integer to m /q,

and Nt /2 is the so called “toroidal Nyquist number.” There-

fore, adequate resolution is also guaranteed in the toroidal

direction.

Note that the field-line-following mesh described above

is used only for calculating fluctuations. A separate 2-D mesh

in the same coordinate system with a uniform grid in both

the radial and poloidal directions is used to represent the

axisymmetric MHD equilibria numerically. This mesh has a

larger grid size, as the equilibrium scale length is much

larger than that of the turbulence. Multidimensional spline

interpolation is used to obtain equilibrium quantities at any

spatial location.

The gyro-kinetic particles are followed in general flux

coordinates using guiding center Lagrangian equations, in-

stead of Hamiltonian equations that require construction of

canonical variables
28

that are complicated forms in general

geometry and are inconvenient to use. The guiding center

Lagrangian obtained by Littlejohn has the following normal-

ized form:
28,29

L�x, ẋ;t� = �A + ��B� · v − H , �2�

with the guiding center Hamiltonian H=��
2B2 /2+�B+�.

Here, the magnetic field B=��A, �� =v� /B is the parallel

gyro-radius, � is the magnetic moment, and � is the electric

potential. The independent variables are x= �r ,� ,� ,���. The

particle guiding drift motion is governed by the Lagrangian

equations

d

dt
� �

�xi

L	 −
�

�xi

L = 0. �3�

The obtained equations for dx /dt are suitable for any gener-

alized flux coordinates.

B. Gyro-kinetic transformation

One of the important elements of the gyro-kinetic

formalism
16,30–34

is concerned with the transformation of

fluctuations between the particle position x and the guiding

center position R. The fluctuations, such as the potential 


and the ion density �ni, in the two coordinates are connected

by the gyro-kinetic transformation, which is expressed as

follows:


̄�R,�� =
1

2


 
�x���x − R − ��dx d� , �4�


̃�x� =
1

2


 
̄�R,��fMi�R,�,v��

���R − x + ��dR d� dv� d� , �5�

�n̄i�x� =
1

2


 �f i�R,�,v����R − x + ��dR d� dv� d� ,

�6�

where � is the gyro-radius vector, � is the gyro-phase, fMi is

assumed to be Maxwellian, and �f i is the perturbed ion dis-

tribution function. In a gyro-kinetic simulation, the quantities

are calculated either in real space or in Fourier space. In real

space, the transformation is carried out by the four-point av-

eraging scheme.
35

The exact gyro-average is performed on a

gryo-plane perpendicular to the magnetic field, with four

points evenly spaced on a gyro-orbit. Because the grid points

on which fluctuations 
 and �ni that are calculated are set up

on poloidal planes, it is much more convenient to perform

the gyro-average on poloidal planes instead of on gyro-

planes. In the case of the simple geometry of large-aspect-

ratio circular concentric cross section, the difference between

a poloidal plane and a gyro-plane is neglected in doing the

gyro-average. An accurate treatment for the gyro-average in

general geometry is obtained by taking into account the finite

ratio of the poloidal to the total magnetic field Bp /B, which

separates the poloidal plane from the gyro-plane. By projec-

tion to the poloidal plane, a gyro-orbit becomes an elliptic

orbit �Fig. 2�. In the direction of ����B����, the gyro-

radius is elongated by a factor of 1 /cos � while there is no

change in the ���B direction. Here, cos �=B ·�� /B����
=�� /JB����, with ���d� /dr and the Jacobian

J= ��r��� ·���−1�0 �right handed�. The four points used

for the gyro-average are chosen to be located on the axes

����B���� and ���B. An ion spends approximately

the same amount of time on each quarter of the ellipse. To

locate the positions of the four points relative to the guiding

center, we first calculate the directional derivatives in the two

directions, which are defined as dA /dl� l̂ ·�A for any func-

tion A, where l̂ is the unit vector in direction l. In the

���B direction,

dr

dl1

=
��gr��2 − g��grr�/q + grrg�� − gr�gr�

�g��B2/��
2 − 1/J2

, �7�

d�

dl1

=
�g��gr� − g��g���/q + gr�g�� − gr�g��

�g��B2/��
2 − 1/J2

; �8�

in the ��	�B���	 direction,

dr

dl2

= −
gr�

J�g���g��B2/��
2 − 1/J2

, �9�
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d�

dl2

=
g��/q − g��

J�g���g��B2/��
2 − 1/J2

, �10�

where the metric tensor g��=�� ·��. The four points used

for the ion gyro-average are determined by

r j = r0 + �r j, � j = �0 + �� j, � j = �0, j = 1,2,3,4

�11�

with

�r1,2 = ±
dr

dl1

�i, ��1,2 = ±
d�

dl1

�i,

�12�

�r3,4 = ±
dr

dl2

�i

cos �
, ��3,4 = ±

d�

dl2

�i

cos �
.

The calculation of the potential 
̃�x� in terms of 
�x�
involves the double averaging process.

36
Following the

above method, we can extend the previous calculation of


̃�x� to general geometry, taking into account finite B� /B.

The double average is made along the elliptic orbit projected

on the poloidal plane as shown in Fig. 3, where 
̃ at the

center point is the four-point average of 
̄ on the X points,

which are other four-point averages of 
 on the O points.

The average over the distribution function is accomplished

by carefully sampling different gyro-radii.
36

It is noted that the four-point averaging scheme is accu-

rate for k��i�2 modes. To resolve shorter wavelength

modes, we may use more points for the averaging process.

An implicit assumption of the four-point averaging scheme

described above is that the equilibrium scale lengths Lp and

LB of the pressure and magnetic field are much larger than

the ion gyro-radius, which is consistent with the gyro-kinetic

ordering.

C. Basic equations

The gyro-kinetic particle distribution is expressed as

f = f0+�f . Here we separate the turbulence perturbation �f

from the equilibrium distribution f0. In the electrostatic limit,

the ion gyro-kinetic equation for �f i, with � and v� as inde-

pendent velocity variables, is

��f i

�t
+ �v�b̂ + vE0

+ vE + vd� · ��f i

− b*̂ · ���B +
e

mi

�0 +
e

mi


̄	 ��f i

�v�

= − vE · �f0 + b*̂ · �� e

mi


̄	 �f0

�v�

+ Ci
l��f i� . �13�

Here,vE0
and vE are the E�B drift velocities corresponding

to the equilibrium potential �0 and the fluctuation potential


̄, respectively, vd is the �B drift velocity, b̂
*= b̂+��b̂

� �b̂ ·�b̂�, where b̂=B /B, and Ci
l is the linearized Coulomb

collision operator. Note that a parallel velocity nonlinearity

term that is one order higher
30

is retained in the equation.

This term is required in order to maintain energy

conservation.
31,32

The equilibrium distribution function f0 is

determined by the neoclassical dynamics and obeys

�f0

�t
+ �v�b̂ + vE0

+ vd� · �f0 − b*̂ · ���B +
e

mi

�0	 �f0

�v�

= Ci�f0, f0� . �14�

The lowest-order solution of Eq. �14� is a shifted Maxwellian

consistent with plasma rotation:

f0 = fSM = n�r,��� mi

2
Ti

	3/2

e�−mi/Ti���1/2��v� − Ui�
2+�B�, �15�

where the parallel flow velocity Ui is associated with the

toroidal rotation by Ui= I�t /B, where �t is the toroidal an-

gular velocity, I is the toroidal current, and n�r ,�� is the ion

density; namely, n�r ,��=N�r�emiUi
2
/2Ti−e�̃0/Ti. The total equi-

FIG. 2. �Color online� Ion gyro-orbit.

FIG. 3. �Color online� Schematic diagram of double average process for

calculating 
̃ at the center position.
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librium potential consists of two parts: �0= 
�0�+�̃0. Here,


 � denotes a flux surface average. The poloidally varying

component �̃0 can be generated by the centrifugal force,

which drives charge separation on a magnetic surface in

strongly rotating plasmas.
37

Generally the radial potential


�0� is dominant. The equilibrium radial electric field can be

calculated from a first-principles based particle simulation of

neoclassical dynamics with important finite orbit effects,
38,39

or obtained by direct experimental measurement if available.

For equilibrium toroidal plasmas, a shifted Maxwellian with

either model or experimental profiles of 
n�r ,���, Ti�r�, and

�t�r� is prescribed for the ions. The electron dynamics is

described by the drift kinetic equation, neglecting the finite

gyro-radius effect. The electron guiding center distribution is

represented as fe= fe0− �e�
 /Te�fe0+�he, with turbulence

potential �
=
− 

�. The equilibrium distribution fe0 satis-

fies the electron version of Eq. �14� and can be approximated

by a shifted Maxwellian containing a parallel flow, similar to

that for the ions. The second term for fe represents the adia-

batic electron response to the potential fluctuation due to the

fast electron motion. The nonadiabatic electron distribution

�he is determined by

��he

�t
+ �v�b̂ + vE0

+ vE + vd� · ��he

− b*̂ · ���B +
e

me

�0 +
e

me


	 ��he

�v�

= − vE · �fe0 + b*̂ · �� e

me


	 �fe0

�v�

+
e

Te

��


�t
fe0

+ �v�b̂ + vE0
+ vE + vd� · �� e�


Te

	 fe0 + Ce
l ��he� .

�16�

Again, the parallel velocity nonlinearity is retained here for

�he. At present, the trapped electron dynamics described by

Eq. �16� is treated as a higher-order correction to the adia-

batic response via a hybrid model
40,41

in the electrostatic

limit. To include full electron dynamics, we will use the

split-weight scheme
42,43

to solve Eq. �16�.
The electrostatic fluctuation potential is divided into a

turbulence part plus a zonal flow part: 
=�
+
00 with


00�

�. This expression emphasizes the critical role of

turbulence-generated zonal flow in determining the turbu-

lence and the associated transport level. For the turbulence

potential, the gyro-kinetic Poisson equation
16

becomes

�1 +
Ti

Te

	 e�


Ti

−
e�
̃

Ti

=
�n̄i − 
�n̄i�

n0

−
�ne

�1� − 
�ne
�1��

n0

,

�17�

where �n̄i, expressed by Eq. �6�, is the ion fluctuation density

of guiding centers and �n
e

�1�
=�d3

v�he is the nonadiabatic

density of electrons. Because the zonal flow has a larger

spatial scale than the turbulence fluctuations, it is advanta-

geous to solve for it separately in our simulations. The gen-

eralized equation for zonal flow in shaped geometry is ob-

tained as

1

Vr�

d

dr
�d
00

dr
Vr�
g

rr��
=

1

Vr�

d

dr
� d

dr
�Ti

e
� 
�n̄i�

n0

−

�ne

�1��

n0

	�Vr�
g
rr��

− � 1

�i
2�Ti

e
� 
�n̄i�

n0

−

�ne

�1��

n0

	 , �18�

where Vr�= �d� d�J. In Eq. �18�, we use the Padé approxi-

mation �0�b�� I0�b�e−b�1/ �1+b� with I0 the modified

Bessel function and b= �k��i�
2, and 

̃��

�̃. The latter ap-

proximation is not well justified for low-aspect-ratio geom-

etry. A generalized field solver such as in Ref. 44 may help to

remove this approximation.

III. SIMULATION RESULTS

The general geometry model has been implemented

based on GTC architecture. In this section we present simu-

lation results, including linear and nonlinear benchmarks,

nonlocal ITG instability, nonlinear turbulence spreading in a

shaped plasma, and turbulence self-regulation in a collision-

less plasma.

A. Benchmarks

The general geometry model and simulation have been

benchmarked, in the large-aspect-ratio circular concentric

geometry limit, against the original GTC code, which uses a

simple analytical MHD equilibrium. For this benchmark, a

corresponding numerical equilibrium is produced for the

general geometry simulation. The numerical equilibrium in-

cludes a mild Shafranov shift due to nonzero plasma beta

and higher order �in the small inverse aspect ratio� correc-

tions. The benchmarks are carried out for ion temperature

gradient modes with a simplified adiabatic response for the

electron dynamics. The representative parameters for the fa-

miliar Cyclone case
10

are used here: inverse aspect ratio

a /R0=0.358, ion temperature profile R0 /LT=6.92 exp�−��r
−0.5� /0.28�6�, Te /Ti=1, q=0.854+2.184r2, and LT /Ln

=0.319. For these simulations, as well as nonlinear simula-

tions in Secs. III B and III C, no source is used, either based

on artificially maintaining the plasma profile or modeling

external particle and energy sources.

The linear benchmark simulations are carried out in a

radial domain from 0.2 to 0.8 �in terms of normalized minor

radius�. In the toroidal direction, all simulations, including

nonlinear runs in later sections, are run as a full torus �not a

wedge�. Additional parameters are: a /�i=125, total number

of grid points is 1.5�106 with 32 poloidal planes, and less

than five particles/cell are used in the linear simulation. The

ITG instability is measured at r=0.5, where the temperature

gradient peaks. In each linear run, only a single-n mode with

specified toroidal mode number is calculated using a filter

process. Here, we specify five toroidal mode numbers:

n=5, 9 , 16, 23, 27, which cover the poloidal wave num-

bers k��i from 0.1 to 0.6. As illustrated in Fig. 4, good agree-

ment is obtained for the real frequencies �r, while the

growth rates � of the higher-n modes from the general ge-
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ometry simulation are slightly lower. The overall difference

in frequency magnitude ��� is less than 5%. The contour

plots of the electrostatic potential perturbation on a poloidal

plane show quite similar eigenmode structures from the two

simulations. The ITG real frequencies and growth rates from

our global simulations are also compared with local calcula-

tions using a comprehensive linear eigenvalue FULL

code,
45,46

and reasonably good agreement is obtained. It is

noticed that the growth rates of our linear benchmark results

agree reasonably well with previous benchmarks.
10

However,

the real frequencies are about 20% lower than that of the

previous benchmarks. There are two major factors that may

contribute to this difference. �i� The MHD equilibria are not

identical for these simulations, which has considerable ef-

fects on ITG instability. The previous benchmarks used the

so-called “s-�” model with �=0. In our general geometry

simulation, we use a numerical MHD equilibrium which has

Shafranov shift due to nonzero plasma beta and includes

finite-aspect-ratio corrections. These finite-aspect-ratio cor-

rections are also taken into account in the analytic equilib-

rium used for the model geometry GTC simulation. It turns

out that the linear frequency and growth rate are rather sen-

sitive to these subtle differences of equilibrium. This is often

observed in local linear calculations using the FULL code,

and was also discussed in Ref. 19. �ii� There exist nonlocal

effects in our global simulation, as suggested by the results

presented in the next subsection.

The same parameters are used in the nonlinear ITG

benchmark, except that the particle number per cell is in-

creased to 20. The velocity space nonlinearity is included,

which may have considerable effect on turbulence

dynamics.
47

Flat marker temperature and density profiles are

used in the general geometry GTC simulation for the bench-

marks only. The radial simulation domain here is from r

=0.1 to r=0.9. As shown in Fig. 5, the nonlinear benchmark

results are in good agreement for both the steady-state heat

flux and the zonal flow over the entire radial domain. It is

also found that the self-generated zonal flow in ITG turbu-

lence has a spatial scale of the order of the turbulence radial

extension, with a roughly odd parity.

It is well known that electrostatic turbulence with adia-

batic electrons does not drive particle transport across the

magnetic field lines. This result can be used as a rigorous test

for a complex simulation such as that developed in this pa-

per. In Fig. 6 the heat flux, and the energy flux, which is the

sum of the heat flux and the convective energy flux carried

by the particle flux, versus time at r=0.46 are plotted. The

result that the energy flux and heat flux are the same indi-

cates that, indeed, no particle flux is produced in the simula-

tion. Moreover, the particle flux is driven nowhere over the

entire radial domain �0.1�r�0.9� of the global simulation.

The above linear and nonlinear benchmarks against the

original GTC are nontrivial since, as detailed in Sec. II, the

general geometry model and simulation are largely different

in a number of aspects.

B. Nonlocal ITG modes and global turbulence
dynamics

Most previous linear analysis of microinstability has

been carried out locally, neglecting the radial variation of

FIG. 4. �Color online� Real frequency �r and growth rate � of ITG insta-

bility versus poloidal wave number k�, compared with the original GTC

calculation and FULL code.

FIG. 5. �Color online� Steady-state heat flux profile and zonal flow profile of

nonlinear ITG simulation with simple magnetic geometry, compared with

the original GTC result.
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equilibrium quantities such as pressure gradient and pressure

itself. While GTC is a global toroidal code, in order to focus

on the simplest problems involving shear effects due to the

radial variation of the pressure gradient, the plasma tempera-

ture and density were assumed constant in the previous simu-

lations. While such a treatment is well motivated and useful

in separating and clarifying fundamental physics issues, it

does not realistically capture the comprehensive global phys-

ics. In Fig. 7, we present an example of global ITG instabil-

ity from the simulation of the general geometry model, tak-

ing into account the radial variation of temperature and

density consistent with their gradient profiles. Corresponding

to the temperature profile of Fig. 7, the system size is

a /�i�100 �on average�, and the simulation uses 1.5�106

grid points with less than five particles per cell. Compared to

the simulation with constant T and n, the ITG growth rate is

considerably reduced, with no significant change in the real

frequency. Meanwhile, the contour plot of the electric poten-

tial on a poloidal plane shows that the eigenmode structure is

twisted in the poloidal direction. Note that in this simulation

and in nonlinear simulations hereafter, the nonuniform grid

cells described in Sec. II A are used. The nonuniform grid

cells, in general, are quite useful for experimental plasma

profiles with substantial variation in temperature from the

core to the edge, as they provide a roughly uniform �and

efficient� spatial resolution in which the grid size is corre-

lated with the local gyro-radius. For the cases simulated here,

the benefit of nonuniform grid cells is less pronounced as the

ratio of maximum to minimum gyro-radii is mild.

We have also applied our new nonlinear ITG simulation

capability to a shaped toroidal plasma, based on the DIII-D

experiment with the same model profiles as in Fig. 7. Addi-

tional parameters used in nonlinear simulations here and

hereafter are: aspect ratio R0 /a=3, average a /�i�200,

Te /Ti=1, total grid points are about 1.2�107 with 64 poloi-

dal planes, and average particle-number/cell is about 15.

First, we examine the global turbulence evolution dynamics.

The spatio-temporal evolution of the flux surface averaged

turbulence intensity is plotted in Fig. 8. The turbulence is

driven by the ion temperature gradient initially in the linearly

unstable region �0.42�r�0.76�, and then fluctuations

spread in both the inward and outward radial directions into

the linearly stable regions, leading to radially global turbu-

lence and transport nonlocality. The fluctuation intensity

level in the stable regions is comparable to that in the origi-

nal unstable regions. Also presented are three snapshots of

the electric potential contour plot on a poloidal plane, which

illustrate the dynamic, global evolution of turbulence. At an

early time before the nonlinear saturation, radially elongated

streamers are generated in the linearly unstable region with

small extension into the linearly stable zone via linear toroi-

dal coupling.
48

Later on, turbulence eddies are broken up by

the self-generated E�B shearing flows �zonal flows� during

the nonlinear saturation phase. A fast radial expansion of the

fluctuations, with associated nonlinear toroidal coupling, im-

mediately follows as the streamers are broken into smaller

radial scale �higher radial wave number� fluctuations by the

zonal flows. At a later time, they evolve into widely spread

global turbulence, establishing the coupling between linearly

stable and unstable regions.

Turbulence spreading has been widely observed in pre-

vious simulations. It is important to distinguish the turbu-

lence spreading observed in a simulation from the possibility

that initially locally stable regions may become unstable due

to radial profile relaxation which may occur on the transport

time scale. First, in our global simulation, the primary, most

significant turbulence spreading is observed to occur right

after the saturation of the linear ITG instability,
49

a quite

short time scale on which the profile relaxation is negligible.

Second, the k-spectrum of the spreading fluctuations ob-

served in the linearly stable region shows significant differ-

ences from that of the ITG eigenmodes: the k� spectra are

significantly down-shifted relative to those of unstable ITG

modes, and there is no radially elongated eigenmode

structure,
49

which is always observed in the linear phase of

ITG-driven instability. These results will be published with

more detail elsewhere in a separate paper.

C. Turbulence self-regulation in collisionless plasma

One of the key components in ITG turbulence is the

zonal flow, which regulates the turbulence level locally.
50

Figure 9 illustrates the mutual self-regulation between the

zonal flow and the turbulence. There exists a threshold for

zonal flow excitation and a complex causal relation between

the turbulence and the zonal flow. In this collisionless simu-

lation, the observed oscillations in turbulence intensity and

zonal flow energy can be generally attributed to the nonlinear

interplay process in which the turbulence drives the zonal

flow which, in turn, reduces the turbulence to a lower level.

These oscillations should not be confused with the faster

oscillations associated with the geodesic acoustic modes. It

should be pointed out that the nonlinear oscillation shown

here is different than that previously observed in Ref. 17,

which is associated with the collisional damping of zonal

flow.
51

When the zonal flows are artificially excluded, our simu-

lation shows that turbulence intensity does not oscillate after

saturation. This clearly indicates that the oscillation behavior

results from nonlinear interplay between turbulence and

zonal flows. Note that similar properties for the zonal flow

and drift wave system have been demonstrated in simple

FIG. 6. �Color online� Temporal history of ion heat and energy flux of ITG

turbulence with adiabatic electrons �from the simulation of the general

geometry model�.
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analytical models
52,53

in which, however, only the collisional

damping of zonal flow is explicitly assumed. Here, the non-

linear oscillations shown in Fig. 9 occur with collisionless

zonal flows. The apparent nonlinear collisionless damping

processes, which are responsible for the saturation of zonal

flows and the nonlinear oscillations shown in Fig. 9, are not

theoretically understood yet. The candidates may include the

“tertiary instability,”
54

the generalized Kelvin-Helmholtz

instability,
55

and the energy transfer to parallel sound waves

and turbulence via poloidally asymmetric pressure

FIG. 7. �Color online� Simulation results of a nonlocal ITG instability using radially varying temperature and density, compared with the simulation neglecting

the effects of radial shear of temperature and density: real frequency �r �upper-left� and growth rate � �upper-right� vs k��i; contour plot of electric potential

from simulation with nonuniform T and n �middle-left� and simulation without the effects of T and n shear �middle-right�; ion temperature profile �lower-left�,
and corresponding gradient profile �lower-right� used in the simulations.
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perturbations,
56

etc.

Next, we attempt to clarify the possibility of energy

transfer from zonal flow back to turbulence. In a consistent

simulation, it is hard to identify this process from the entire

nonlinear evolution of the system. Here we perform a care-

fully designed numerical experiment to examine this process.

The simulation uses the same parameters as in Fig. 8. We

introduce artificial zonal flows in the regions where the ITG

mode is linearly �and also nonlinearly� stable �r�0.42 and

r�0.76�. The artificial zonal flows are driven by adding in

Eq. �18� a nonzero axisymmetric density fluctuation


�n̄i� /n0, which is a certain fraction of that in the unstable

region �0.42�r�0.76�. In detail, we first calculate a non-

FIG. 8. �Color online� Spatio-temporal evolution of flux surface averaged turbulence intensity �upper left�, and three snapshots of contour plot of electric

potential on a poloidal plane from a simulation of a shaped plasma with typical DIII-D parameters.

FIG. 9. �Color online� Temporal evolution of turbulence intensity 
��2� and

zonal flow energy EZF
2 � �d
00 /dr�2 at r=0.52 �from the same simulation as

Fig. 8�.
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zero density fluctuation in terms of 
�n̄i� inside the unstable

region via �N00�t�=�r1

r2
�n̄i�Vr�dr. Then �N00 is distributed

into the ITG-stable region according to a given function

h�r�=exp�−��r−rc� /rw��� with appropriate normalization.

The local zonal flow pressure perturbation is also included.

In this way it is related to the unstable region; the artificial

zonal flow is excited simultaneously and can be saturated at

roughly the same level as in the unstable region. The spatio-

temporal evolution of the turbulence intensity is plotted in

Fig. 10�a�. Compared to the previous simulation of Fig. 8,

this shows that, in the presence of artificial zonal flows, po-

tential fluctuations are driven to grow in the regions where

the ITG is stable. This fluctuation growth in the early phase

occurs before the propagation front of ITG turbulence from

the unstable region reaches the stable region. The temporal

evolution of zonal flow energy and turbulence intensity at

r=0.33 �ITG-stable region� plotted in Fig. 10�b� shows two

interesting properties: �i� the turbulence components are tem-

porally delayed relative to the zonal flow which is artificially

excited at the same time as that in the unstable ITG region

and �ii� there is an amplitude threshold for zonal flow to

excite turbulence. Both are clear indications of a relation,

that zonal flows can drive turbulence. This can be compared

with the zonal flow generation process in the ITG-unstable

region: Figure 10�c� shows that zonal flows are excited after

the ITG driven turbulence grows to a certain level. As men-

tioned before, this simulation uses artificially driven zonal

flows to demonstrate the possibility that zonal flows can

drive turbulence, which would be difficult to identify in a

self-consistent simulation with complex nonlinear dynamics.

FIG. 10. �Color online� �a� Spatio-temporal evolution of turbulence intensity 
��2� from a simulation with artificial zonal flows introduced in the ITG-stable

regions r�0.42 and r�0.76; �b� temporal evolution of zonal flow energy EZF
2 � �d
00 /dr�2 and turbulence intensity at an ITG stable location r=0.33; temporal

evolution of zonal flow energy and turbulence intensity at �c� r=0.52 �linearly unstable region�; and �d� r=0.33 �linearly stable region� from the self-consistent

simulation of Fig. 8.
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It is also interesting to examine the zonal flow generation

process in the ITG stable region in the consistent simulation

of Fig. 8. The result here is presented in Fig. 10�d�, which

shows that zonal flows are excited by turbulence which has

spread in.

After establishing the fact that zonal flows can drive tur-

bulence, the next question is how efficiently can the energy

be transferred from the zonal flows to the turbulence. Figure

11 shows the temporal evolution of zonal flow energy


��
00�
2�, and turbulence energy 
���
�2�. It is found that

the saturated turbulence energy is two orders of magnitude

smaller than that of the zonal flows. Note that, in Fig. 11, the

second growth in turbulence energy, starting at t�270, is

caused by the spreading of the ITG-driven turbulence origi-

nating in the region 0.42�r�0.76. Our numerical experi-

ments also show that the above observations are not sensitive

to the strength and the profile shape of the artificially excited

zonal flows. In contrast, the zonal flow generation by the

turbulence in the ITG-unstable region is very efficient in the

sense that, during their generation process, zonal flows ex-

tract a large amount of energy from the turbulence compo-

nents. Therefore, our simulation results suggest that zonal

flows can drive turbulence. However, this process is too

weak to be an effective zonal flow saturation mechanism.

It is noticed that this simulation result possesses some

common features with previous simulations.
54

First, both

simulations show that zonal flows can excite turbulence; sec-

ond, the excited turbulence growth rate is comparable to and

even larger than that of the ITG-driven turbulence. However,

our simulation, in which both artificial zonal flows and their

driven turbulence can reach saturation, also shows that the

energy transfer from the zonal flows to the turbulence is

small. As for this aspect, it was not reported in the previous

study, which addressed mainly the zonal flow stability issue.

Also note that direct comparison is difficult for these two

very different simulations. The previous study was carried

out using flux-tube simulation in the regime close to or

slightly above the marginal ITG value �Dimits-shift

regime
10�. Our study uses global simulation with artificial

zonal flows excited in the linearly stable regime below mar-

ginal stability.

IV. SUMMARY

We have presented a generalized model that incorporates

important realism of tokamak experiments into nonlinear

gyro-kinetic simulations of plasma turbulence. These include

a systematic treatment of plasma rotation and equilibrium

E�B flow, realistic plasma profiles and corresponding

MHD equilibria. The general geometry simulation capability

has been developed with the following favorable features. �i�
By rescaling the radial coordinate, the grid size in the per-

pendicular direction is correlated with the local gyro-radius

which, varying substantially from the core to the edge, de-

fines the spatial scale of turbulence at different locations. �ii�
Gyro-kinetic transformations of potential and charge density

between particle and guiding center positions are calculated

with a finite ratio �B� /B� correction that is a significant ge-

ometry effect on the turbulence calculation, particularly for

spherical torus devices. �iii� The applied equilibrium E�B

flow with the spatial scale of the plasma minor radius, which

is believed to play an important role in determining the tur-

bulence level, is calculated from our first-principles based

particle simulation of global neoclassical dynamics with im-

portant finite orbit effects. Working with a symmetry coordi-

nate system, we can construct a relatively regular mesh in

real space for strongly shaped toroidal plasmas. This also

facilitates straightforward visualization. In the large-aspect-

ratio circular concentric geometry limit, cross benchmarks of

the linear and nonlinear characteristics, such as real fre-

quency, growth rate, steady-state heat flux, and zonal flow

amplitude of ITG turbulence have been carried out to vali-

date the general geometry model and simulation.

Our nonlinear simulations have been applied to a DIII-

D-shaped plasma to examine both local and nonlocal phe-

nomena of ITG turbulence. The dynamic evolution from the

radially elongated streamers generated by localized instabil-

ity, to short radial scale fluctuations due to the shearing deco-

rrelation of the zonal flows, and then to radially global tur-

bulence via turbulence spreading into linearly stable regions,

has been demonstrated. The coupling established between

linearly stable and unstable regions via turbulence spreading,

as shown in our simulation, may explain some experimental

reports of the existence of finite density fluctuations and

anomalous heat transport in the linearly stable region inside

an internal transport barrier.
57

With regard to the nonlinear

interplay between zonal flow and turbulence, our numerical

experiments suggest that the zonal flows can drive turbu-

lence. However, the associated energy coupling is too weak

to provide sufficient zonal flow damping to be responsible

for zonal flow saturation and the bursting behavior in the

fluctuations observed in our collisionless simulations.
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