Gyrokinetic Investigations of Turbulence Driven Plasma Current and Shear Flow Driven Turbulence

W. X. Wang

in collaboration with

S. Ethier F. L. Hinton (UCSD) T. S. Hahm (SNU, Korea)

P. H. Diamond (UCSD & NFRI, Korea) E. Startev J. Chen E. Feibush Z. Q. Li (ZJU, China) W. M. Tang

Princeton Plasma Physics Laboratory

40th EPS Conference on Plasma Physics Espoo, Finland July 1 - July 5, 2013

Ack: U.S. DOE Contract DE-AC02-09-CH11466

Gyrokinetic Tokamak Simulation (GTS) code: simulate turbulence and transport in fusion experiments

• Solving modern gyrokinetic equation in conservative form for f(Z,t)

$$\frac{\partial f_a}{\partial t} + \frac{1}{B^*} \nabla_Z \cdot (\dot{\vec{Z}}B^* f_a) = \sum_b C[f_a, f_b]$$

(see, e.g., Brizard & Hahm, Rev. Mod. Phys. '07)

• Using δf method (based on importance sampling) $-\delta f \equiv f - f_0$

$$\frac{\partial \delta f_a}{\partial t} + \frac{1}{B^*} \nabla_Z \cdot (\dot{\vec{Z}} B^* \delta f_a) = -\frac{1}{B^*} \nabla_Z \cdot (\dot{\vec{Z}}_1 B^* f_{a0}) + \sum_b C^l(\delta f_a)$$

 $-f_0$ = neoclassical equilibrium satisfying:

$$\frac{\partial f_{a0}}{\partial t} + \frac{1}{B^*} \nabla_Z \cdot (\dot{Z_0} B^* f_{a0}) = \sum_b C[f_{a0}, f_{b0}]$$

 $-f_0 = f_{\rm SM}$ for ions; $f_0 = f_{\rm SM}$ or $(1 + e\delta\Phi/T_e)f_{\rm SM}$ for electrons $\dot{\vec{Z}} \equiv \dot{\vec{Z_0}} + \dot{\vec{Z_1}}; \quad \vec{Z_1}$ – drift motion associated with fluctuations $\delta\Phi$, $\delta\vec{A_{\parallel}}$ (Wang et al., PoP'06, PoP'10)

GTS uses δf Particle-In-Cell approach

• Particle-in-cell approach – solving marker particle distribution F(Z, w) in extended phase space:

$$\frac{\partial F}{\partial t} + \frac{1}{B^*} \nabla_Z \cdot (\dot{\vec{Z}} B^* F) + \frac{\partial}{\partial w} (\dot{w} F) = 0; \qquad \delta f = \int w F dw$$

$$(1/B^*)\nabla_Z \cdot (\dot{\vec{Z}}B^*F) \Longrightarrow \dot{\vec{Z}} \cdot \nabla_Z F; \text{ taking } Z = \{r, \theta, \phi, v_{\parallel}, \mu\}$$

- Lagrangian equations in general flux coordinates for G.C. motion:

$$\frac{d}{dt}\left(\frac{\partial}{\partial \dot{x_i}}L\right) - \frac{\partial}{\partial x_i}L = 0,\tag{1}$$

$$L(\mathbf{x}, \dot{\mathbf{x}}; t) = (\mathbf{A} + \rho_{\parallel} \mathbf{B}) \cdot \mathbf{v} - H; \quad H = \rho_{\parallel}^2 B^2 / 2 + \mu B + \Phi \quad \text{(Littlejohn PF'81)}$$

- Weight equation

$$\dot{w} = \frac{1 - w}{f_0} \left[-\frac{1}{B^*} \nabla_Z \cdot (\dot{Z}_1 B^* f_{a0}) \right] + \frac{w - \langle w \rangle}{f_0} \left[-\frac{1}{B^*} \nabla_Z \cdot (\dot{Z}_1 B^* f_{a0}) \right]$$

to ensure incompressibility: $(\partial/\partial w)\dot{w} = 0!$

Major numerical and physical features

- Real space field solvers with field-line-following mesh
 - retains all toroidal modes and full channels of nonlinear energy couplings

$$\frac{e}{T_i}(\Phi - \widetilde{\Phi}) = \frac{\delta \overline{n_i}}{n_0} - \frac{\delta n_e}{n_0} \quad -\text{integral form (Lee'83)}$$

$$-\nabla_{\perp} \cdot \frac{Z_i n_{i,0}}{B\Omega_i} \nabla_{\perp} \Phi = \bar{n_i} - n_e \quad -\text{PDE form (Dubin et.al.'83)}$$

- Fully kinetic electrons (both trapped and untrapped electron dynamics)
- Linearized Fokker-Plank operator with particle, momentum and energy conservation for i-i and e-e collisions; Lorentz operator for e-i collisions
- Interaction with neoclassical physics with two options
 - i) include both turbulent and neoclassical physics self-consistently
 - ii) import GTC-NEO result of equilibrium E_r into GTS
- Full geometry, global simulation

Can turbulence drive plasma current or change bootstrap current?

- Plasma self-generated non-inductive current is of great importance
 - NTM physics, ELM dynamics, overall plasma confinement
- \bullet Bootstrap current $J_{\rm bs}$ a well known non-inductive current
 - driven by pressure and temperature gradients in toroidal geometry
 - associated with existence of trapped particles
 - predicted by neoclassical theory (see, e.g., Hinton & Hazeltine, '76);
 - discovered in experiments (Zarnstorff & Prager, '84)
- Total current rather than local current density measured in exptls.
 - $-\sim J_{\rm bs} \pm 50 \%$ in core;
 - significant deviations seem to appear in edge pedestal
- Current generation by turbulence is investigated using nonlinear global gyrokinetic simulations with GTS code
 - focus on electron transport dominated regime CTEM turbulence
 - neglect electromagnetic effect (Hinton et. al., PoP'04)

Minor correction due to finite orbit neoclassical effect

• Nonlocal neoclassical equilibrium solution in collisionless regime:

$$\Delta u_{i\parallel} \simeq -\frac{m_i c}{e} \left\langle \frac{I^2}{B^2} \right\rangle \frac{c T_i I}{e B} \frac{\partial \ln n_i}{\partial \psi_p} \frac{\partial \omega_t}{\partial \psi_p}.$$

(Wang et. al., '06)

Earlier GK turbulence simulations excluding neoclassical physics show significant quasi-stationary electron current generation by CTEM fluctuations

-2L 0.1

0.2

0.3

0.4

0.5

0.6

0.7

8.0

$$\langle j_{\parallel}B\rangle = \langle e \int v_{\parallel}B\delta f d^3v \rangle$$

DIII-D size geometry;

$$R_0/L_{T_e} = R_0/L_n = 6;$$

 $R_0/L_{T_i} = 2.4$; initially rotation free;

mean $\mathbf{E} \times \mathbf{B}$ included

- electrons carry most of current in $+\mathbf{B}$ direction
- ions carry small current in $-\mathbf{B}$ direction
- fine radial scales presented in electron current
- Much weaker current generation by ITG

Bootstrap current generation can be significantly modified in the presence of turbulence

• New sim. incl. both turb. & NC physics simultaneously in CTEM regime

- Results consistent with turb.-only sim.
- Total J_{bs} mainly carried by passing e⁻
- Turb. contr. dominated by trapped e⁻

Fluctuation-induced current is associated with nonlinear electron flow generation

$$\langle j_{\parallel}B\rangle = e\langle n(u_{i\parallel} - u_{e\parallel})B\rangle$$

- Electron flow generation by turb. residual stress due to k_{\parallel} symmetry breaking
- Turbulence acceleration of electrons?

Electron detrapping by drift wave turbulence (McDevitt et. al. '13)

Characteristic dependence of fluctuation-induced current generation

Share similarity wth conventional bootstrap current, but with different physics origins

- increases with ∇p
- decreases with B_p
- increases with magnetic shear dq/dr
- collisionality dependence

Optimized flow is of great importance in fusion plasmas

- Control macroscopic stability; reduce micro-turbulence and energy loss
- Turbulence generation of global intrinsic rotation is critical in ITER
 - turbulent residual stress driven by ∇T , ∇n produces a local torque
 - interplay of turbulent torque and edge boundary conditions/effects
 (Diamond et. al., NF'09)
- Free energy in flow gradient may drive its own instability and turbulence
 - velocity shear drive Kelvin-Helmholtz instability in fluid
 - in plasmas, flow shear may drive a negative compressibility mode (Catto et al., '73; Matter & Diamond, '88; Artun & Tang, '92 ...)
 - observed in linear machines.
 - largely ignored and unexplored in tokamaks
 (presumably assumed hardly unstable due to magnetic shear effect)
- First results of flow shear driven turbulence and transport from nonlinear global GK simulations [with GTS code (Wang et al., PoP'06)] are reported

Strong flow shear can drive micro-instability in tokamak

- Global GK simulation with kinetic electrons
- DIII-D-size geometry
- $R_0/L_{T_i} = R_0/L_{T_e} = R_0/L_n = 1.2 \text{ITG and TEM are stable}$

- Low-k mode (in same range of ITG mode)
- Smaller but almost constant growth rate

Distinct linear features of flow shear instability

- significant finite k_{\parallel} $k_{\parallel} \sim \hat{b} \cdot \nabla \theta (m nq)$
- stronger Landau damping \rightarrow increase instability threshold $R_0/L_{\omega_t} > R_0/L_{T_i}$ (for ITG) $R_0/L_{\omega_t} > R_0/L_{T_e,n}$ (for TEM)
- asymmetry (impact on residual stress generation)

Nonlinear toroidal mode couplings play a key role to cause flow shear turbulence saturation

- Nonlinear energy transfer to longer wavelength modes via toroidal mode couplings
- Strong zonal flows and GAMs generation

Flow shear turbulence can drive significant momentum and energy transport

- Observation of turbulent intrinsic torque in co-current direction
- Limitation on de-stiffness seen in gyrofluid simulation (Jhang, IAEA FEC '12)

Effects of q-profile structure

• Magnetic shear shows no suppression effect on flow shear instability in tokamak plasmas!

Effects of q-profile structure – what happens at rational surfaces with integer q-number?

- Fluctuations peak at lowest-order rational surface q = 2 (and q = 3) (only in nonlinear phase)
- Zonal flow shear shows corrugated structure at the same location

Why fluctuations peak at lowest-order rational surfaces with integer-q number – a theoretical explanation

- Due to minimum Landau damping at $k_{\parallel} = 0$, $\phi_{m,n}$ peaks at q(r) = m/n
- $I(r) = \sum_{m,n} |\phi_{m,n}|^2 d_{m,n}(r) \sim \sum_{m,n} d_{m,n}(r)$ assuming $\phi_{m,n}$ same for all MRSs
- Example with $q = 1 + 2(r/a)^2$

- Fluctuations peak at integer rational surfaces (rather than fractional!)
- Many spurious peaks at rational surfaces when using a subset of modes

Peaked fluctuations and transport impact plasma profile structure near integer rational surfaces

- Local "corrugations" generated in all radial profiles near integer rational surface: V_t , n_e , T_e and T_i
- Potential impact of profile corrugations:
 - transport barrier formation near (integer) rational surface (Waltz et. al., PoP'06)
 - electron scale turbulence via nonlinear ETG excitation

Summary

CTEM turbulence is found to drive a significant, quasi-stationary current

- Consistent results obtained between turb. sim. with and w/o NC physics
- Mainly carried by trapped electrons & driven by electron residual stress
- Similarity in characteristic dependence with neoclassical bootstrap current (but with different physics origins)
 - increases with ∇p ; decreases with equilibrium I_p (and B_p);
 - increases with magnetic shear dq/dr; collisionality dependence

Strong flow shear may drive its own instability and turb. transport in tokamak

- Low-k range as ITG; smaller but almost constant growth rate; finite k_{\parallel}
- Saturation via nonlinear toroidal energy transfer to lower-k modes and strong ZFs and GAMs generation
- Significant momentum & energy transport, including an intrinsic torque
- Fluctuations peak at integer (not fractional) rational surfaces
- local "corrugations" generated in all plasma profiles near the surfaces

