

Visualization Techniques for Monitoring Simulations

Eliot Feibush, Member, IEEE

Fig. 1. Visualizing f(x,t) and f(x,y,t) data for monitoring a fusion simulation. The graph of Pe_FUS(rho) shows all the f(x,t) time step
curves in a single plot (center panel). A color gradient from blue to red is applied to the curves to convey the time ordering in a
single graph. Time index 115. has been selected in the legend and highlighted in the plot. The yellow triangles at the bottom of the
legend are user interface controls for scrolling the list of time indices. The f(x,y,t) data for Psi(R,Z) is downloaded and visualized in
the client program (right panel) so it can be explored interactively. All available variables are listed in the control panel (left).

Abstract—Visualization techniques for time indexed data are described for monitoring long running simulations. Approaches that
emphasize data exploration and interaction have been developed for simulation data that can be downloaded to the client. The
data is stored in a netCDF file on the server and automatically monitored by the client. When larger amounts of data are produced
the visualization is computed on the server side and an image is rendered for each time step. The client displays the images in
sequence to show an animation of the simulation. The netCDF files and the images are stored in HTTP served directories so
scientists can monitor long running simulations from anywhere on the Internet.

 Index Terms—Data visualization, simulation/analysis monitoring, scientific computer graphics, interactive data exploration.

1 INTRODUCTION
Monitoring long running simulation and analysis programs is
important for conserving computer resources and human time. Data
typically evolves over the time base of the simulation program.
Periodically checking the validity of the output data as the simulation
runs improves efficiency. An errant run can be stopped or possibly
steered without having to let it run to completion.

Our goal is to enable scientists to monitor their run from
anywhere on the Internet. Given the long run time and variable start
time it is necessary to monitor from any location. The visualization
client program has been written in Java for portability across
platforms while maintaining only one version of source code. It can
be easily downloaded and installed on a personal computer.

2 RELATED WORK
The motivation for monitoring is described in [1] along with a
complex, client-server architecture for processing and transmitting

large amounts of data to a single, remote monitoring station.
Another approach to monitoring [2] utilizes the licensed AVS
software to display the computed data.

A framework for accessing monitor data over the web is
described in [3]. The architecture is designed for a visualization
client that downloads data from an HTTP server and renders on the
user’s local computer. The details of the visualization client, ElVis,
are described here.

3 MONITORING VARIABLES WITH GRAPH TEMPLATES
The ElVis display client automatically monitors variables stored in
netCDF files. These structured data files contain variables and
attributes. The API for reading the data includes specifying the
source as a URL or a local file [4]. Storing the netCDF file in an
HTTP served directory makes the data readable over the web. This
simplifies the overall system architecture because it does not require
a specialized server program or protocol and leverages the HTTP
server. The client simply checks the URL for new data. This

• Eliot Feibush is with the Princeton Plasma Physics Laboratory,
E-Mail: efeibush@pppl.gov.

Manuscript received 1 July 2009.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org .

!

facilitates collaboration among users at different locations because
the netCDF file can be served to multiple clients at the same time.

Variables are defined with a specific number of samples per
dimension plus an “unlimited” dimension that corresponds to
simulation time steps. At the end of each time step the simulation
appends data to the variables so they grow in the unlimited
dimension. If the simulation produces very large amounts of data
then a representative subset must be extracted for monitoring. ElVis
periodically reads the netCDF URL, checks for new data, and adds it
to the visualizations. A key advantage of this approach is that any
data source that writes data in this style can be automatically
monitored and visualized.

The polling rate is programmatically adjusted to the production
rate. If no new data is found then the rate is decreased. When new
data is read the rate increases until monitoring catches up with
production. A session can start at any time during a run and show all
accumulated data. A completed run can be reloaded for playback.

An output file can contain hundreds of different variables which
could lead to dozens of graphs. One approach to organizing a large
number of graphs is the “filmstrip” or “slide” layout shown in Fig. 2.
Users are familiar with this paradigm for organizing slides and
digital photos so it is easily learned when applied to graphs. The
graph compositions are stored in a template that describes the
contents of each graph, such as the variables to plot, choice of
presentation style, and annotation. The template accomplishes
visualizing and comparing new runs and automatically reloading the
variables in the desired appearance. This approach was requested by
physicists using ElVis for monitoring fusion simulation programs.

Having the data locally enables exploration entirely in the client
to achieve fast interaction. A new technique was developed for
controlling the animation of f(x,t) variables: as the crosshair for the
digital readout is moved across a scalar f(x) plot vs. time, the
animation of f(x,t) advances to the closest time step as in Fig. 3. The
user can simultaneously examine the values in the scalar plot and see
the curves for the corresponding time.

4 MONITORING WITH SEQUENCES OF RENDERED IMAGES
A complementary approach to computing visualizations in the client
is to render images on a visualization server. This approach is well
suited to simulations that produce very large amounts of data which
are impractical to transmit over the web. Instead, an image is
rendered on the server side as each time step is computed. A typical
image sequence is shown in Fig. 4. This approach offers
considerable flexibility to visualization. Any visualization program
that produces an image file on the server can be part of the system.
Storing each image in a web served directory enables the client to
access it as a URL from anywhere on the Internet. ElVis checks for
new images and displays them in sequence. Users can scroll and
zoom into the images during playback. Our experience is that
informative images (in terms of size and content) can be downloaded
fast enough to achieve animation. When the simulation is complete
the images are recalculated based on the global range of all the data.
Then the images are combined into one movie file that can be
downloaded for playback. A portable, command-line program was
developed for creating movie files to avoid copying all the image
files to another platform and running an interactive movie maker.

REFERENCES
[1] J. Insley, M. Papka, S. Dong, G. Karniadakis, and N. Karonis. Runtime

Visualization of the Human Arterial Tree. IEEE Transactions on
Visualization and Computer Graphics, 13:810–821, July/August 2007.

[2] T. Watanabe, E. Kume, and K. Kato. Simulation Monitoring Using
AVS., volume 2329, pages 990-999. ICCS, 2002.

[3] D. Aswath, M. Thompson, M. Goode, X. Lee, and N. Kim. Secure
Federated Light-weight Web Portals for FusionGrid. Second
International Workshop on Grid Computing Environments, 2006.

[4] John Caron, NetCDF-Java (version 2.2) User’s Manual,
www.unidata.ucar.edu, 2004.

Fig. 2 A “filmstrip” layout is useful as the number of graphs increases.
The user can scroll through the thumbnail views and select a graph to
display in the main panel. The graph is composed by choosing
variables listed in the control panel on the left.

Fig. 3 As the f(x) data is examined with the digital readout in the top
row, the animation is simultaneously advanced to the closest time step
for the f(x,t) graphs in the second and third row. This technique was
requested by fusion scientists.

Fig. 4 An image is rendered on the server as each timestep is computed.
The monitoring client checks for new image URLs and displays them
sequentially to achieve an animated movie over the web.

	vis09.pdf
	vis09.2.pdf

