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Phase-Matched Third Harmonic 
Generation in a Plasma 

J. M. Rax and N. J. Fisch 

Abstract-Relativistic third harmonic generation in a plasma is 
investigated. The growth of a third harmonic wave is limited by 
the difference between the phase velocity of the pump and driven 
waves. This phase velocity mismatch results in a third harmonic 
amplitude saturation and oscillation. In order to overcome this 
saturation, we describe a phase-matching scheme based on a 
resonant density modulation. The limitations of this scheme are 
analyzed. 

I. INTRODUCTION 

HIRD harmonic generation in a plasma has been recently T proposed as a candidate for a coherent light source at very 
short wavelength [l]. The study of this process was triggered 
by recent advances in laser pulse compression [ 2 ] .  One can 
now envision a laser plasma interaction in the relativistic 
regime, i.e., typically above 10" W/cm2. 

At sugh high intensity, not only does the quiver velocity 
become relativistic, but the electron orbit becomes nonlinear 
and contains all the harmonics of the incident field [3]. 

In vacuum, this nonlinear orbit of an electron in an intense, 
plane-polarized, laser wave is the well-known figure "8" 
[4] depicted on Fig. 1. A cold plasma (with an electron 
temperature smaller than the electron rest mass, 51 1 keV), 
driven by a strong wave, can be viewed as an array of such 
microscopic nonlinear currents. 

The coherence of these microscopic currents can thus ensure 
the growth or the decay of a coherent harmonic wave. Basi- 
cally, three different emission processes must be considered. 
The first one, spontaneous harmonic emission, is indeed inco- 
herent, and has been widely investigated [3]. Because of the 
lack of correlation between the various microscopic sources, 
the emitted power scales as the density, i.e., as the square of 
the plasma frequency w:. If these microscopic currents are 
properly correlated, we obtain collective harmonic emission 
(which will be considered in this work), and is what we call 
harmonic generation. In this process, the emitted wave is too 
weak to modify the electron dynamics driven by the incident 
wave. The stimulated harmonic emission, when the induced 
wave feeds back on the electron dynamics, which might boost 
the linear growth to an exponential one, is not considered in 
this paper. 

In a cold plasma, the relative phasing of the currents is 
ensured by the pump wave. This emission process is collective, 
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Fig. 1. A cold plasma, driven by an intense wave A, can be viewed as an 
array of microscopic currents including both linear and nonlinear responses 
to the applied field. The main difficulty in calculating the amplitude of the 
various processes is to sum accurately the individual nonlinear responses. 

but not stimulated, so that a linear growth of the harmonic 
wave is expected. In fact, it has been shown previously [5] that 
a phase-locked linear regime does not occur for a long time, 
and, since the phase velocity of the driven and pump waves 
are different, a very rapid unlocking takes place, resulting in 
an amplitude oscillation. The purpose of this paper is to study 
in greater detail both this process and the means to overcome 
the associated saturation. 

This paper is organized as follows. In Section 11, we calcu- 
late the nonlinear currents induced by an intense laser wave in 
a cold plasma. To carry out this program, we use a Lagrangian 
description of the plasma response [6] ,  and a density expansion 
scheme [7]. This is a powerful approach, particularly because, 
in the relativistic regime, the plasma frequency is to be 
replaced by an effective plasma frequency due to the electron 
effective mass. In Section I11 we study the dynamics of the 
harmonic wave driven by the nonlinear currents. We show that 
this dynamics can be reduced to the study of the amplitude 
and phase evolution of the generated wave. In Section IV, 
to overcome the phase-velocity mismatch saturation, the use 
and limitations of a resonant density modulation are analyzed. 
Section V gives our conclusions. 

In the following calculations, except in the discussion, we 
will use e = m = c = w = 1, where e and m are the electron 
charges, and mass c is the velocity of light, and w the laser 
pump frequency. 

11. NONLINEAR CURRENTS 

Two regimes of relativistic laser plasma interaction have 
been identified, the so-called short pulse, and long pulse 
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regime [l]. In the former, the plasma period w;’ is longer than 
the pulse duration Sw-’, and in the latter regime this time or- 
dering is reversed. In the short pulse regime, the pulse-particle 
interaction is dominated by the relativistic ponderomotive 
force [7], which acts as a ballistic perturbation on the electron 
population. The main effect of this perturbation is to create an 
electrostatic wake behind the pulse. On the other hand, in the 
long pulse regime, the picture is completely different; after a 
transient response at the front edge of the pulse, a nonlinear 
oscillation, driven by the wave, and modulated by the plasma 
collective effects, is set up in the bulk of the pulse. Thus, 
provided that the vector potential envelop of the laser pulse, 
A ( z , t ) ,  is slowly varying (dA /dz  < wA/c,dA/dt < wA),  
when an electron enters the pulse, it behaves essentially as 
in an infinite wave. Consequent.ly, in this section, we will 
neglect the influence of the pump-envelop dynamics, i.e., we 
will neglect the group velocity mismatch. This latter effect is 
an edge effect. It takes place on a long time scale compared 
to the phase velocity mismatch [5 ] .  It is therefore the phase- 
velocity mismatch that is responsible for the inefficiency of 
third harmonic generation in an homogeneous plasma. 

A laser pulse is said to be an ultrahigh-intensity pulse i f  
eA/mc 2 1; above this 10l8 W/cm2 threshold, the electron 
quiver velocity is fully relativistic. In this relativistic regime, 
as we show later, the calculation of the dispersion relation 
involves the plasma frequency, but the electron mass m 
is to be replaced by the electron effective mass M ,  so 
that w;/(w2M) % w;/(w2eA/mc) is a small parameter, 
even near the linear cutoff, when A > 1. Thus, the ratio 
of the effective plasma frequency to the pump frequency 
provides a small parameter that may be employed to carry out 
expansion schemes. Moreover, the physical interpretation of 
such a density expansion scheme is clear. Consider an intense, 
linearly polarized, laser wave propagating along the z axis, 
with 

A ( z ,  t )  = A COS [t - z + 8(t)]ez (1) 

where 8 ( t )  is a slowly varying phase, to be determined, 
describing the nonlinear dispersion of the phase velocity. This 
field drives the electron motion through the Lorentz equation. 
Each electron is described by its unperturbed position z,, and 
it follows a Lagrangian orbit, ~ ( z , ,  t ) ,  and 

h(zo, t )  = z ( t )  - Z, (2)  

about its rest position (Fig. 1). The momentum, p = dx/dTe,+ 
dhldre,, and energy y2 = 1 + (dx/dT)2 + (dh/dT)2 (T  is the 
proper time) of the electrons are solution of the equations. 

The last term on the right-hand side of these equations is a 
restoring force, which arises from the application of the Gauss 
theorem to the perturbed electron density [6]. This electrostatic 
force describes the collective plasma response so that, in this 
Lagrangian representation, the use of a scalar potential is 
avoided. The solution of the Lorentz equations (3) allows us 

to calculate the Eulerian current due to the response of one 
electron 

where S is the Dirac function, and we have used the conser- 
vation of the transverse canonical momentum, ydxldt = A.  

We have to perform the sum of all these nonlinear currents in 
order to calculate the source terms in the Maxwell’s equations. 
In doing so, we set up a closed, coupled, description of the 
wave and particle dynamics. Using the Lorentz gauge, we 
obtain 

To solve the coupled Maxwell-Lorentz system (3) and (9, let 
us first consider the lowest order in W E .  When all collective 
plasma effects are neglected, the electrons perform the well- 
known figure “8” motion [4] depicted in Fig. 1, 

(6) 

where we have introduced the effective mass of the electron 
in the wave A,  

M = diTPp. (7) 

The proper time T is a nonlinear function of the time, which 
contains all the harmonics of the incident pump wave. This 
nonlinear relation between the time and the proper time is the 
key issue in the calculation of the electron nonlinear response, 
t = z,/V + J ‘ ~ ( u ) d u , V  is the slope of the space-time 
translation through which we obtain all the orbits from a 
particular one as depicted in Fig. 2. V is equal to one to 
lowest order, and to the phase velocity inside the pulse. On 
the basis of (6), we can express T in terms of J,, the ordinary 
Bessel functions, as 

T ( t ,  2,) = ~ t - z o / V J F  J n [ - n , i / 4 M 2 ]  sin[2n(t -2,) +2n8]. 
M n=l 

(8) 
After some algebra, we can rewrite Jdz,S[z - z ,  - 

h(t,z,)]y-l(z,,t) = (y - p ) - l  to lowest order, where p 
is the longitudinal momentum, p = dh/dr. From (6) we 
obtain y - p = M.  Thus, despite the fact that the microscopic 
Lagrangian currents contain the various harmonics of w ,  the 
Eulerian current contains only the fundamental, so that the 
Maxwell equation (5) becomes 

d 2 A  d 2 A  - w i  
dz2 dt2 M 

-A (9) 

This absence of harmonic generation, to lowest order in U;, 
is not surprising. Here we are looking for an w; collective 
response and, to get this response, we have to calculate the 
nonlinear orbit to first order in up”, for the Eulerian currents 
to be second order in wp”. 

Nevertheless, despite the absence of harmonic generation to 
this order, the relativistic nonlinearity manifests itself through 
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Equation (12) allows us to write down the Eulerian nonlin- 
ear current up to the order wp”, 

- p o J ( t ,  2) = A(t ,  2) [wj - - P :;;2 COS [2(t  - 2) + 281 . 

113) 
The nonlinear current clearly contains the third harmonic of 
the pump field. However, this current is phase locked with 
the phase velocity of the pump wave, which is expected to be 
different from the phase velocity of the driven third harmonic 
wave. Thus, we have to plug (13) into the Maxwell equation 
in order to find the efficiency of harmonic generation. 

111. THIRD HARMONIC GENERATION 

Since the current response contains a third harmonic compo- 
nent, rather than ( l ) ,  we have to seek a solution of Maxwell’s 
equations in the form of a sum of the pump field A ,  plus a 
third harmonic field a. To study the dynamics of this third 
harmonic, we consider the slowly varying wave 

A(z ,  t )  = Acos [t - z + O(t)]ez + a ( t )  cos [3(t - z )  + +(t)]e,. 

The amplitude a and phase 4 are evolving on the slow 
time scale of the problem. Because of the conservation of 
the transverse canonical momentum, (13) is still valid, with 
A given by (14). We separate the fundamental from the 

Fig. 2. Lagrangian picture of the electron dynamics in an intense plane wave. 
The relative phasing of the electrons is given by the slope of the wave front V. 

(14) 
the slowly varying phase evolution which can be obtained by 
plugging (1) into (9) to get 

Up” 
2 M  (lo) harmonics to obtain e( t )  = -t. 

Thus, as a result of the cancellation between the relativistic 
velocity anharmonicity and the relativistic density oscillations, 
harmonic generation occurs only at the order w i ,  i.e., at the 
order w; for the orbits [l]. In this order, the phase velocity is 
1 + ~ , 2 / 2 M ,  and we have to solve (3), to first order in wp”. 
Equation (3) gives 

dp  A’ - = -- sin [2(t  - z )  + 281 - wp”yh 
(11) 

and we seek a solution of the form: h ( A 2 / 8 Q 2 )  sin [ ~ Q T  + 
281 + O[w;], and t M QT + ( A 2 / 8 Q 2 )  sin [ ~ Q T  + 281 + O[wp”]. 
The plasma effects not only add up higher order harmonic 
terms, O[w,2], to the solution (6), but also shift the nonlinear 
frequency M to give a new effective mass, Q = M + 
O[W;]. This nonlinear frequency shift is the standard way to 
avoid secular terms in the perturbative solution of nonlinear 
oscillation equations. After some algebra, we obtain 

The second term, on the right-hand side, induces the ampli- 
tude dynamics, while the first term is reactive and describes 
refraction. 

Then we use the slowly varying amplitude and phase 
assumption and average out the fast time scale. After the 
change of phase variable, cp(t) = +(t) - 38(t) ,  we find to 
the lowest relevant order in wp” 

The phase portrait of this dynamical system is depicted in 
Fig. 3, where we show the level curves of the invariant 
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low density plasma layers. Rather than a square wave density 
modulation, it seems more practical to consider a sine wave 
density modulation such as an ion acoustic wave 

(20) 
Sn 
- = E sin (Rit - Kiz) 
n 

where n is the density, E < 1,  and the dispersion relation 
is = Ki d m  (T is the electron temperature, and mi is 
the ion mass). Typically, the pulse length is smaller than the 
ion acoustic wavelength, so that the modulation is basically 
static on the time scale of the laser pulse dynamics. Thus, 
we introduce the modulation frequency seen by the pulse, 
R = R i u g / d m ,  where ug = c(1 + O [ ( W , / W ) ~ ] )  is the 
group velocity of the pulse. To the lowest relevant order in 
w p / w ,  we can take R z Ri/dm. Equation (16) then 
becomes 

da w;A3 
dt 64M; 

[I + 2~ sin (R t ) ]  sin (cp) - - - -  

9 dt - - - % [ 1 + E s i n ( ~ t ) l  3M (21) 

w;A3 cos (VI [ I  +2~sin(Rt)]-. -- 
1 I 64M4 a 

phase 0 

Fig. 3. Phase portrait of (16), eA/mc  = 1. ( W ~ / W ) ~  = 0.1. 

When the amplitude a becomes large, the second term on 
the right-hand side of the second equation can be neglected 
compared to the first one, and the phase oscillates with 
time. Then we plug this phase oscillation into the amplitude 
equation, and use the Bessel expansion of the sine of an 
oscillation, so that we can write to lowest relevant E order 

da - w;A3 
d t  64M4 

E: 
x 
0 m 

22 
2 0  

E J N ~ ~ E W ; / ~ M R )  sin A t + N R t  + N z  . 

Clearly, for some particular choices of the parameters, N ,  52, 
and wp,  one can induce a secular linear response. 

To do so we take a particular odd integer N and consider 
the resonance condition, N R  + (4w,2/3M) = 0,  to be fulfilled. 
The associated resonant term, in the sum (24), dominates the 
other bounded oscillating we can average out the 
oscillating part of a to obtain the growth of the secular part a s .  

[z =I - - -- 8 
(22) 

-1 
12 4 phase 8 

Fig. 4. If it starts from background noise, the third harmonic wave describes 
the separatrix orbit. To detrap this orbit, one can kick the wave repeatedly, 
i.e., resonantly, along the bold arrows. 

The ratio of the third harmonic power P3 to the pump power 
PI remains bounded at a low level [5] namely, 

To overcome this saturation, and to increase the efficiency of 
harmonic generation, we have to find a means to detrap this 
oscillating orbit. 

IV. PHASE MATCHING 

Detrapping can be achieved in a resonant way. Consider 
Fig. 4, when the amplitude a reaches the maximum of the 
separatrix orbit; suppose we were able to kick the wave to 
the minimum of a different orbit in the direction of the bold 
arrows. Then, the wave evolves along the bold orbit. Again, at 
the maximum, we could transfer it to another orbit, and so on. 

Such a scheme, which alternates passive dephasing (arrows) 
with active generation can be implemented with high and 

* = w 4 - J ~ ( N & ) .  A3 
d t  64M4 

The density modulation can be excited in the high-frequency 
part of the ion acoustic wave dispersion or in the low- 
frequency part. Consider the latter case, with a frequency 
far below the ion plasma frequency; for example, Ri w 
wpi d m ,  and a dense plasma such that w M wp.  With 
these parameters, the N M 1 resonance can be achieved in the 
intensity range A z 1. For a weak modulation, we can use the 
expansion of the Bessel function in (23) to obtain 

w;A3 
128M4Ewt. 

a s  = ___ 

Thus, the typical time needed to obtain third harmonic 
conversion of the pulse is of the order of 1OZ/Ew(a M A M 

To assess the impact of the variation of the various pa- 
rameters on the resonant phase matching, three issues are to 

1 , w  M w,). 
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be addressed: 1) the amplitude stability, i.e., the impact of a 
small deviation SE of the amplitude of the modulation; 2) the 
frequency stability problem, i.e., the impact of a small detuning 
SO; and 3) the effect of density inhomogeneities Sw,. 

A variation of the amplitude of the modulation does not 
affect the resonance condition, but it modifies the time required 
to achieve the conversion. On the other hand, the modulation 
frequency and the background density must be controlled 
carefully. For a fixed N ,  the sine in (24) is a constant at exact 
resonance; if the resonance is slightly detuned by an amount 
SW, or SR, then the sine term remains approximately constant 
during the time needed to perform the phase matched third 
harmonic conversion if 

ISOI + ISw,l < 10-2Ew. (25) 

Although the saturation due to phase velocity mismatch is 
avoided, and linear growth recovered, the group velocity mis- 
match will ultimately limit the interaction time. This limitation 
is not severe, and it may be that a delay device can also achieve 
group velocity matching. 

V. CONCLUSION 

In quantum electronics, the most important issue of har- 
monic generation with bounded electrons is phase velocity 
matching: the same problem is also central to third harmonic 
generation with relativistic free electrons in plasma. 

We show here that third harmonic generation can be 
achieved with an efficiency 

in a density modulated plasma. The analytic techniques [7] 
introduced might also be employed to address the impor- 
tant issues of pump depletion, and the competition with the 
generation of the higher harmonics. 
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