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Chapter 1

Introduction

The books by Stevens,3 Padmanabhan,4 and Tribble5 are particularly nice, concise sum-

maries of advanced physics at the graduate student level. Richard Fitzpatrick has

written a wide range of online physics textbooks, including for plasma physics, at

http://farside.ph.utexas.edu/teaching/.

An anotated list of good plasma textbooks are in the references.11

For a brief review of complex analysis, try Tribble’s book or Appendix C “Pedestrian’s

guide to Complex Variables,” in Nicholson’s Introduction to Plasma Theory. (If that starts too

deep for you, check out the references he sites. I like Sokolnikoff and Redheffer, Mathematics

of Physics and Modern Engineering.)

Summaries of E&M and classical mechanics are in K. Miyamoto, Plasma Physics for Nu-

clear Fusion (MIT, 1980).

Unless otherwise indicated, most of the formulas here are in cgs, not SI (MKS).

Acknowledgements: Thanks to my many physics and mathematics teachers over the years,

including Prof. Tom Stix, Paul Bamberg, George Carrier, John Krommes, and many others.

Useful corrections and suggestions for this document have been made by Tim Stoltzfus-Dueck,

Nino Pereira, and ...
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Chapter 2

Mathematics

2.1. Basic Equations

Quadratic Equation:

ax2 + bx+ c = 0 ⇒ x =
−b±

√
b2 − 4ac

2a

Factorials:

n! = n(n− 1)(n− 2) · · · (3)(2)(1) =
n
∏

j=1

j

1! = 1 0! = 1

(2n+ 1)!! = (2n+ 1)(2n− 1)(2n− 3) · · · (5)(3)(1) = (2n+ 1)!

2nn!

(2n)!! = (2n)(2n− 2)(2n− 4) · · · (4)(2) = n!2n

The number of permutations (where order matters) of k objects selected from a set of n
objects, is

n!

(n− k)!
= n(n− 1)(n− 2) . . . (n− k + 1).

The number of combinations (where order doesn’t matter) of k objects selected from a set of n
objects is (this is sometimes called “n choose k”):

(

n
k

)

=
n!

k!(n− k)!

The binomial theorem:

(x+ y)n =

n
∑

k=0

(

n
k

)

xkyn−k
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Geometry

Ellipse Area = πab.
Circle Area = πr2, Circumference = 2πr.

Sphere Volume = 4
3
πr3, Area = 4πr2. b

a

Solid Angle: δΩ =
δS

R2

∫

∂V

dΩ = 4π R
Sδ

x

y

r r sin

r cos
θ

θ

θ

Trig identities:

sin2 x+ cos2 x = 1

tanx =
sin x

cosx
=

1

cot x
sec x =

1

cosx
csc x =

1

sin x

cos2 x =
1 + cos 2x

2
cos(x+ y) = cosx cos y − sin x sin y

sin2 x =
1− cos 2x

2
sin(x+ y) = sin x cos y + cosx sin y

Exponential identities:

eiθ = cos θ + i sin θ

sin θ =
eiθ − e−iθ

2i
cos θ =

eiθ + e−iθ

2i

sinh θ =
eθ − e−θ

2
cosh θ =

eθ + e−θ

2

cosh2 x− sinh2 x = 1

For an arbitrary triangle:

a2 + b2 − 2ab cos θ = c2

sin θ

c
=

sinφ

b
=

sin ξ

a

a

b

c
θ ξ

φ
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Differentiation

dg(u) = g′(u)du

d(fg) = fdg + gdf

d

(

f

g

)

=
gdf − fdg

g2

d sin x = cosxdx d tanx = sec2 xdx

d cosx = − sin xdx d cotx = − csc2 xdx

d sec x = tan x sec xdx d csc x = − cotx csc xdx

d arcsin x =
dx√
1− x2

d arccosx =
−dx√
1− x2

d arctanx =
dx

1 + x2
d arcsec x =

dx

x
√
x2 − 1

d log |x| = dx

x

Taylor Series (with remainder):

f(x) = f(a)+
f ′(a)

1!
(x−a)+

f ′′(a)

2!
(x−a)2+ · · ·+ f (n)(a)

n!
(x−a)n+

f (n+1)(X)

(n+ 1)!
(x−a)n+1

Infinite Series:
1

1− x
= 1 + x+ x2 + · · ·+ xn + · · ·

1− xn+1

1− x
= 1 + x+ x2 + · · ·+ xn

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
+ · · ·

sin x = x− x3

3!
+
x5

5!
+ · · ·+ (−1)n

x2n+1

(2n+ 1)!
+ · · ·

cosx = 1− x2

2!
+
x4

4!
+ · · ·+ (−1)n

x2n

(2n)!
+ · · ·

for −1 < x < 1: log(1 + x) = x− x2

2
+
x3

3
+ · · ·+ (−1)n+1x

n

n
+ · · ·

√
1 + x = 1 +

x

2
− x2

8
+
x3

16
− · · ·

1√
1 + x

= 1− x

2
+

3x2

8
− 5x3

16
− · · ·

for |x| > |y|: (x+ y)α = xα +
α

1!
xα−1y +

α(α− 1)

2!
xα−2y2 + · · ·
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Vector & Tensor Operators (in simple Cartesian geometry)

∇ =

(

∂

∂x
,
∂

∂y
,
∂

∂z

)

d ~A = d~r · ∇ ~A

d ~A = (dx, dy, dx)





















∂

∂x

∂

∂y

∂

∂z





















(Ax, Ay, Az)

Here I am using the notation that a row vector times a column vector is a dot product, while

a column vector times a row vector is a tensor product. I.e., ∇ ~A is a tensor product, while
~B · ∇ ~A is a vector (the gradient of ~A in the direction of ~B).

Einstein summation convention: there is an implied sum over repeated indices. This sim-

plifies working with tensors represented as their indexed matrix elements. Let xi for i = 1, 2, 3
represent the x,y,z coordinates, and Ai the component of ~A in the i’th direction.

~A · ~B = AiBi

( ~B · ∇ ~A)i = Bj
∂Ai

∂xj
Tensor notation (for simple Cartesian geometry, ignoring contravariant vs. covariant repre-

sentations and upper vs. lower indices): Writing two vectors next to each other (without a dot

that would indicate a dot product or inner product) is called a tensor product (or outer product)

and results in a second-rank tensor: ~A~B = AiBj (sometimes this is called a dyad; the tensor

product is sometimes denoted by ~A⊗ ~B or ~A~BT, where ~A is a column vector and ~BT is a row

vector). Tensors are ≈ matrices:

~~T · ~A = TijAj
~~T · ~~P = TijPjk

~A · ~~T = AjTji
~~T :

~~P = TijPij ( ~A~B) : ( ~C ~D) = ~C · ~A~B · ~D,
~~T :

~~P involves contraction with respect to two indices and is called a colon product (or a “dou-

ble dot product”). It is a generalization of a scalar inner product from vectors to matrices. The

Frobenius matrix norm ||~~T || =
(

~~T :
~~T
)1/2

.

∇ψ is a vector =
∂

∂xi
ψ

∇ ~A is a tensor =
∂

∂xi
Aj

∇ · ~~T is a vector =
∂

∂xi
Tij

∇ · ( ~A · ~~T ) = ∂

∂xj
(AiTij) = Ai

∂

∂xj
Tij +

∂Ai

∂xj
Tij = ~A ·

(

∇ · ~~T t
)

+
(

∇ ~A
)

:
~~T

where
~~T t is the transpose of

~~T . The unit tensor
~~1 = I = identity matrix = Kronecker delta

δij =

{

1 if i = j
0 if i 6= j
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Levi-Civita symbol:

( ~A× ~B)i = εijkAjBk where

ǫijk =







1 if i 6= j 6= k cyclic permutation of 1, 2, 3

−1 if i 6= j 6= k cyclic permutation of 1, 3, 2

0 if i = j or j = k or i = k

(∇×A)i = εijk
∂

∂xj
Ak

ǫijkǫilm = δjlδkm − δjmδkl is equivalent to

( ~A× ~B) · ( ~C × ~D) = ( ~A · ~C)( ~B · ~D)− ( ~A · ~D)( ~B · ~C)
This can be used to prove

∂Aj

∂xi
vj −

∂Ai

∂xj
vj = (v ×B)i

where B = ∇×A. That is, (∇A) · v − v · ∇A = v ×B.

Cylindrical, Spherical, and General Geometry

x

y

z

z

φ
r

Cylindrical geometry: d~r = r̂dr + φ̂rdφ+ ẑdz.

x

y

z

z

φ
r

θ

θ

φ̂

^

r̂

^

^

^

Spherical geometry: d~r = r̂dr + θ̂rdθ + φ̂r sin θdφ.

Add something here about vector operators in general curvilinear coordinates, Jacobians,

coordinate transformations, etc??

d~S is a vector that is “normal” to the surface, |d~S| measures the area.
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Integration

∫

f dg = fg −
∫

g df

∫

dx

x
= log |x|

1

2π

∫ 2π

0

sin2 θ dθ =
1

2

Gamma Function: Γ(x) = (x− 1)! =

∫ ∞

0

tx−1e−tdt

Stirling’s approx.: n! ∼
√
2πnnne−n (1 +

1

12n
+ . . .)

uniform approx. good for n = 0: n! ∼
√
2πn+ 1nne−n

error ≤ 1% for integer n ≥ 0, max error ≤ 4% for n ∼ 0.1

Generalized Maxwellian Moments for complex α, β; Real α > 0:

Gn =

∫ +∞

−∞
xne−αx2

e−βx dx

G0 =

√

π

α
eβ

2/(4α) G2n = (−1)n
∂nG0

∂αn
G2n+1 = (−1)2n+1∂

2n+1G0

∂β2n+1

In particular, for a Maxwellian distribution function:

fM =

(

1√
2πvt

)3

exp
[

−(v2x + v2y + v2z)/(2v
2
t )
]

v2t =
T

m
〈v2nx 〉 =

∫

d3v v2nx fM = v2nt (2n− 1)!!

So that 〈E〉 = 1
2
m〈v2x + v2y + v2z〉 = 3

2
T . I.e., the average energy per degree of freedom is 1

2
T .

“Normal” distribution function:

f(x|x̄, σ) = 1√
2π σ

exp

[

−1

2

(

x− x̄

σ

)2
]

“Error” function:

Φ(y) =
2√
π

∫ y

0

e−t2dt =

∫ +y
√
2σ

−y
√
2σ

dxf(x, 0, σ)

Φ(0) = 0 Φ(±∞) = ±1 Φ(1σ/
√
2σ) = 0.68 Φ(2σ/

√
2σ) = 0.95
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2.2. Complex Analysis

f(z) is analytic in some region if its derivative df/dz exists (i.e., is independent of the

direction of dz in the complex plane). The terms holomorphic, monogenic, and regular are also

used. More formally, f is holomorphic if f satisfies the Cauchy-Riemann equations (where u
and v are real-valued functions):

f(z) = u(z) + iv(z) z = x+ iy

∂u

∂x
=
∂v

∂y

∂u

∂y
= −∂v

∂x

Equivalently, f is holomorphic if d(fdz) = 0 in modern differential geometry notation. If f is

holomorphic, then it satisfies

∇2f =
∂2f

∂x2
+
∂2f

∂y2
= 0

Cauchy’s integral formula: For z ∈ regionD, and f(z) holomorphic everywhere inD, then

the n’th derivative of f is related to the following integral around the boundary of D (going

counter-clock wise around the contour D):

f (n)(z) =
n!

2πi

∫

∂D

f(ξ)

(ξ − z)n+1
dξ

The leads to the formula for contour integrals:
∮

C

f(ζ)dζ = 2πi× (sum of the residues inside the contour C)

If f(z) has a pole of order n at z = a, then its residue is defined as

residue =
1

(n− 1)!
lim
z→a

dn−1

dzn−1
((z − a)nf(z))

Fourier Transforms:

f(t) =
1√
2π

∫ ∞

−∞
e−iωtF (ω)dω

F (ω) =
1√
2π

∫ ∞

−∞
eiωtf(t)dt

Convolution theorem:

∫ ∞

−∞
e−iωtF (ω)G(ω)dω =

∫ ∞

−∞
g(t− t′)f(t′)dt′

Fourier transform of a Gaussian is a Gaussian: f(t) = e−at2 → F (ω) =
1√
2a
e−ω2/(4a)

Common forms of Dirac delta function: δ(t) =
1

2π

∫ ∞

−∞
dωe−iωt

δ(t) = lim
L→∞

sinLt

πt
δ(t) = lim

ǫ→0+

ǫ

π(ǫ2 + t2)

lim
ǫ→0+

1

x− a∓ iǫ
= P.V.

1

x− a
± iπδ(x− a)
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2.3. Differential Equations

ODE’s, WKB methods, PDE’s. Green’s functions.

Dirichlet boundary conditions take the form f(x = x0) = C.

Neumann boundary conditions take the form df/dx|x=x0
= C.

Three main classes of partial differential equations:

• Hyperbolic (wave-like with characteristics): ut = ux, or utt = uxx.

• Parabolic (diffusion-like, characteristics would spread in time): ut = uxx.

• Elliptic (Poisson-like, characteristics would go both directions): uxx + uyy = 0

Generalized Langevin equation, Green’s function solution.

Special Functions.

2.4. Linear Algebra and Matrices

2.5. Numerical Methods

ODE’s: First order explicit and implicit, Second order Runge-Kutta or Predictor-Corrector

Schemes, Adams-Bashforth, Leapfrog, Symplectic methods. Higher order Runge-Kutta, SSP

RK, IMEX. Backward differentiation formulas (BDF) for stiff equations. Numerical stability,

phase errors of various schemes

PDE’s: conceptual frameworks for solution: finite difference, finite volume, finite element

(continuous Galerkin), discontinuous Galerkin, Fourier spectral, other spectral basis expan-

sions (polynomials).

Diffusion equations and implicit methods. Convection equations and upwind differencing

and limiter methods. Tri-diagonal matrix solver

Finite Fourier Transforms, Convolution equations. Dealiased pseudospectral methods by

the (2/3) rule.

Modern higher-order upwind algorithms for hyperbolic conservation laws: Finite-Volume

flux-limited algorithms (monotonicity-preserving / TVD / WENO), Discontinuous Galerkin

methods with limiters.

Iterative implicit solvers, acceleration methods (conjugate gradients, 2cd order Richardson

acceleration, Chebyshev, Anderson acceleration), Multigrid methods.
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2.6. The Greek Alphabet

Alpha A α Nu N ν
Beta B β Xi Ξ ξ
Gamma Γ γ Omicron O o

Delta ∆ δ Pi Π π, ̟
Epsilon E ǫ, ε Rho P ρ, ̺
Zeta Z ζ Sigma Σ σ, ς
Eta H η Tau T τ
Theta Θ θ, ϑ Upsilon Υ υ
Iota I ι Phi Φ φ, ϕ
Kappa K κ Chi X χ
Lambda Λ λ Psi Ψ ψ
Mu M µ Omega Ω ω

(“varpi” ̟ originated as a π with bent legs, but sometimes called “pomega”)

Math and LaTeX dictionary

ℵ \aleph aleph

ℜ \Re real part

ℑ \Im imaginary part

∞ \infty infinity

∀ \forall for all

∃ \exists there exists

R \mathbb R the set of all real numbers

C,Z,Q the set of all complex numbers, integers, or rationals

{. . .} lists the elements of a set

∈ \in element of

⊂ \subset subset

∩ \cap intersection

∪ \cup union

(a, b] interval with open and closed ends {x : a < x ≤ b}
⇐⇒ or iff if and only if

Examples of mathematical notation: Let f(~x, t) be a function that maps an m-dimensional

vector ~x and a real valued t to a real number. The notation for this is, f : Rm × R → R.



Chapter 3

Classical Mechanics

Classical (non-quantum, non-relativistic) Lorentz equation of motion for a particle in an elec-

tric and magnetic field:
d~x

dt
= ~v

m
d~v

dt
= ~F = m~a = e

(

~E(~x, t) +
~v × ~B(~x, t)

c

)

Lagrangian formulation for generalized coordinates qi(t): The Principle of Least Action: The

actual path ~q(t) minimizes the Action A =
∫ t1
t0
dtL(q, q̇, t) (subject to fixed initial and final

values of ~q), which leads to the Euler-Lagrange equations:

d

dt

(

∂L

∂q̇i

)

− ∂L

∂qi
= 0

where q̇i = dqi/dt. The Lagrangian L is the kinetic energy minus the potential energy (at least

for simple systems). For a particle in an electromagnetic field we have

L =
1

2
m~̇x

2
+
e

c
~̇x · ~A− eφ

in terms of the vector potential ~A(~x, t) and potential φ(~x, t). The Lagrangian L given here is

in Cartesian coordinates, and can then be transformed to any qi coordinates. The Hamiltonian

formulation uses the generalized momentum

pi =
∂L

∂q̇i

To obtain the Hamiltonian

H(pi, qi, t) =
∑

i

piq̇i − L

=
1

2m

(

~p− e

c
~A
)2

+ eφ

And the Hamiltonian equations of motion are:

~̇q =
∂H

∂~p
, ~̇p = −∂H

∂~q

The meaning of all this? At least in simple cases

K = KineticEnergy

U = PotentialEnergy

13
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L = K − U, H = K + U (H=energy always)

Note that L = L(~q, ~̇q) while H = H(~q, ~p), so that ∂/∂qi in the two different approaches

(Lagrangian and Hamiltonian) holds different independent variables fixed because ~p 6= m~̇q in

general (such as with electromagnetic terms).

The time evolution of any function defined on phase space (and time) f(~q, ~p, t) is

df

dt
=
∂f

∂t
+
∂f

∂qi
q̇i +

∂f

∂pi
ṗi =

∂f

∂t
+
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi
≡ ∂f

∂t
+ {f,H} = 0

which serves to define the Poisson bracket {f,H}. (Sometimes square brackets [f,H ] are

used, we will use curly brackets to distinguish it from the commutator of quantum mechanics.)



Chapter 4

Electricity & Magnetism

“To convert any expression from SI to cgs units, make the replacements, B → B/c, ǫ0 →
1/(4π), µ0 → 4π/c2. The inverse transformation is more complicated, and is described in

Jackson (1975)”7 and in the NRL formulary.

15
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(This page intentionally blank, to start the next chapter on a left page.)



Chapter 5

Plasma Physics

Fundamental phenomena: electron plasma oscillations, Debye shielding, gyroradius, gyro-

frequency, collisions, plasma skin depth.

Debye shielding from Boltzmann response in thermodynamic equilibrium: f ∝
exp(−H/T ) ∝ exp(−(mv2/2 + qΦ)/T → n ∝ exp(−qΦ/T )
Plasma Parameter Λ = nλ3D = # of particles in a Debye sphere. Λ ≫ 1 defines the

usual plasma state. Nearest neighbor interactions weak: (potential energy of nearest neigh-

bors)/(kinetic energy) ∼ 1/Λ2/3. Collective interactions strong (quasineutrality, Debye-

shielding length is short, 2-stream instability, frozen-in field lines, Alfvén and other plasma

waves).

Fundamental length scales (evaluated for Λ ∼ 106):

90◦ impact

parameter
:

average

interparticle

spacing
:

Debye

shielding

length

: mean free path

b : n−1/3 : λD : λmfp

Λ−1 : Λ−1/3 : 1 : Λ/ log Λ

10−6 : 10−2 : 1 : 105

b is the “distance of closest-approach” for a single 90◦ collision (though it turns out that the net

scattering rate is enhanced by a factor of log Λ due to many small-angle scatters.) λmfp ∼ v/ν
is the mean free path between collisions.

Time scales: Collision frequency is weak: ν/ωpe ∼ logΛ/Λ.

?? Guiding center drift equations (Lagrangian formulation).

Laser-plasma interactions. Figure-8 orbits.

5.1. Fundamental Kinetic Theory

Classical (non-quantum) non-relativistic Lorentz equation of Motion for the i’th particle:

d~xi
dt

= ~vi

mi
d~vi
dt

= ~Fi = mi~ai = ei

(

~E(~xi) +
~vi × ~B(~xi)

c

)

17
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A trick for replacing these 2N ODE’s with a single PDE is to use the Klimontovich-Dupree

equation for f∗(~x,~v, t) =
∑

i δ(~x− ~xi(t))δ(~v − ~vi(t)),

∂f∗
∂t

+ ~v · ∂f∗
∂~x

+ ~a · ∂f∗
∂~v

= 0

The Vlasov equation for f is identical to this equation for f∗, except that f is considered to

be a smooth density of particles in phase-space (and so has been course-grained, averaging

over a finite volume, or f is considered as a statistical probability function from an ensemble

average). This smooth f (which produces a smooth electric field) thus ignores the effects of

collisions between discrete particles (where the electric field blows up if any two particular

particles get too close). Collisions must be reintroduced via a collision operator on the right-

hand side (or will arise from next order corrections in the coarse-graining/averaging procedure

as in the BBGKY hierarchy), leading to the Boltzmann equation:

∂f

∂t
+ ~v · ∂f

∂~x
+ ~a · ∂f

∂~v
= C(f)

Another approach: Multidimensional Conservation Laws.

Let f(x1, x2, . . . , xN , t) be a distribution for an N-dimensional phase space, where the

equations of motion are dxi/dt = ẋi = ui. Then particle conservation can be expressed as:

∂f

∂t
= −

∑

i

∂

∂xi
(ẋif) = −

∑

i

∂

∂xi
(uif) = −~∇ · (~uf)

Breaking up the phase-space in to the canonical positions ~q = (x1, x2, . . . , xN/2) and the

canonical momenta ~p = (xN/2+1, . . . , xN ), then the phase-space conservation law for f(~p, ~q)
can be rewritten as

∂f

∂t
+

∂

∂~q
·
(

~̇qf
)

+
∂

∂~p
·
(

~̇pf
)

= 0.

Using the Hamiltonian equations of motion one can then show Liouville’s theorem

Df

Dt
=
∂f

∂t
+ ~̇q · ∂f

∂~q
+ ~̇p · ∂f

∂~p
= 0,

i.e., f is constant along trajectories in phase space (conservation of phase-space).

Equilibrium solutions (if f a function only of constants of the motion, Boltzmann thermo-

dynamic equilibrium...).

2-stream instability, Landau damping.

5.2. Fokker-Planck Collision Operator and Coulomb Scattering

General expression for probabilistic transitions. Let f(~v, t) be the density of particles (or

the probability distribution for a single particle) at velocity ~v at time t. If P∆t(~v, ~ξ) is the

probability of a particle initially at ~v taking a step to ~v + ~ξ, then

f(~v, t) =

∫

d3ξf(~v − ~ξ, t−∆t)P∆t(~v − ~ξ, ~ξ)

This is also known as a Markov process. Doing a Taylor-series expansion for small ξ

f(~v − ~ξ, t−∆t)P∆t(~v − ~ξ, ~ξ) ≈ f(~v, t−∆t)P∆t(~v, ~ξ) + ξi
∂

∂vi
f(~v, t−∆t)P∆t(~v, ~ξ)

+
1

2
ξiξj

∂

∂vi

∂

∂vj
f(~v, t−∆t)P∆t(~v, ~ξ)
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integrating over all ~ξ and taking the limit ∆t→ 0 gives the generic Fokker-Planck equation:

(

∂f

∂t

)

Coll

= C(f) = − ∂

∂vi

[

f(~v, t)
〈∆vi〉
∆t

]

+
∂

∂vi

∂

∂vj

[

f(~v, t)
〈∆vi∆vj〉

2∆t

]

= − ∂

∂vi

[

f(~v, t)~̇vi

]

+
∂

∂vi

∂

∂vj
[f(~v, t)Dij ] = −∂Ji

∂vi

Where 〈∆vi〉 =
∫

d3ξP∆t(~v, ~ξ)ξi, and similarly for 〈∆vi∆vj〉. For finite size time steps, the

diffusion tensor should be given by

Dij =
〈(∆vi − 〈∆vi〉)(∆vj − 〈∆vj〉)〉

(2∆t)

(assuming I did the multi-dimensional generalization of this right??). ~J =
∑

β
~Jαβ is given in

the NRL formulary and is the flux in velocity space of species α due to collisions with species

β. Because of the analogy with electrostatics noted by Rosenbluth, the Rosenbluth potentials

in the NRL can also be written as

∇2
vH = −(1 +

mα

mβ

)4πfβ ∇2
vG =

2

1 + (mα/mβ)
H

If fβ is Maxwellian, then the collision operator simplifies to the form at the top of NRL p. 36

(this ignores the back-reaction of fβ due to collisions with the non-Maxwellian fα). A useful

I.D.:
∂

∂~v
·
[

1

2v3
(v2~~1− ~v~v)

]

= − ~v

v3

Coulomb logarithm: The NRL formulary gives a recipe for a general Coulomb logarithm

ln Λαβ = ln(rmax/rmin) for a test particle α colliding with field particles β with relative veloc-

ity ū = |vα − vβ|. Note that the symmetry lnλαβ = lnλβα is important in proving various

conservation properties of the collision operator, and the lnλαβ factor should be kept inside the

v′ = vβ integral in the Landau form of the collision operator on p.35 of the 2002 NRL formu-

lary, if the dependence of lnλαβ on the relative velocity is retained. (Since the collision opera-

tor is only accurate to ∼ 1/ lnΛ, often this can be neglected, but the symmetry lnλαβ = lnλβα
should still be preserved.) The NRL’s recipe says that the maximum impact parameter is cut off

by Debye shielding, rmax = (4π
∑

γ nγe
2
γ/kTγ)

−1/2, “where the summation extends over all

species γ for which ū2 < v2Tγ
” (where ū is the relative velocity). An obvious question is what

happens for suprathermal particles that are even faster than thermal electrons, do they not ex-

perience Debye shielding at all? The answer is that they are still shielded, but only on a longer

spatial scale on which their transit frequency is of order the plasma frequency. Thus a possible

generalization of this recipe is to replace r−2
max =

∑

γ ω
2
pγ/v

2
tγ →

∑

γ(ω
2
pγ + Ωcγ)

2/(v2tγ + ū2),
keeping a sum over all species. The Coulomb logarithm is usually derived for the standard

weakly-coupled plasma regime where is it very large. A more general approximation is to

replace ln Λαβ = ln(rmax/rmin) → ln((1 + r2max/r
2
min)

1/2). This will give approximately the

correct collisional relaxation rates, but in this regime small angle collisions no longer dominate

so the diffusive approximation is no longer rigorous.

Qualitative collision rates:

νei : νee : νii : νie

Zeff : 1 :
√

me/mi : me/mi
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Electron-ion collisions cause pitch angle-scattering only, giving rise to resistivity (electrons

lose momentum to ions), and electron-electron collisions cause fe to approach a Mawellian

(preserving the electron energy, in the ion rest frame). Ion-ion collisions cause fi to approach

a Maxwellian (preserving the ion energy). Ti and Te equilibrate only at the very slow νie rate.

ν ∼ 1/v3 so energetic particles are less collisional.

5.3. Braginskii Fluid Equations

The summary of Braginskii in the NRL is supplemented here. Braginskii uses the Landau

collision operator for Coulomb collisions between ionized particles (thus ignoring atomic pro-

cesses, collisions with neutrals, external sources or sinks of particles or energy). (Note, the

NRL reverses the definition of
~~Π and

~~P relative to Braginskii’s original notation.)

nα =

∫

d3vfα nα~uα = nα〈~v〉α =

∫

d3vfα~v

Pressure tensor ~~Πα = pα
~~1+

~~P α = nαmα〈δ~vδ~v〉α = nαmα〈(~v−〈~v〉α)(~v−〈~v〉α)〉α

Heat flux ~qα = nα
1

2
mα〈|δ~v|2δ~v〉α

Friction / Collisional drag rate ~Rα =

∫

d3v mαδ~v Cα & heating Q =

∫

d3v
1

2
mα|δ~v|2 Cα

Defining p = nT gives 〈m|δ~v|2/2〉 = (3/2)T , i.e. T/2 of energy per degree of freedom (di-

mensions or modes among which energy can be shared). p is the isotropic part of the pressure

tensor, so
~~P must be traceless. Braginskii used a Chapman-Enskog-like approach to calcu-

late the closures in the collisional limit. The NRL has summaries of Braginskii for Ωcτ ≫ 1
or ≪ 1, though Braginskii has more general expressions. The NRL expressions are for a

hydrogen-electron plasma, while Braginskii gives expressions for a plasma with arbitrary ion

charge Zi and for multiple ion species, ne =
∑

i niZi. To generalize the NRL formulas for

arbitrary Zi, the electron and ion collision times and various coefficients are modified in the

following way:

τe =
3
√
me T

3/2
e

4
√
2πniZ

2
i e

4Λ
τi =

3
√
mi T

3/2
i

4
√
πniZ4

i e
4Λ

Zi dependence of various transport coefficients (Braginskii, Table 1)

First term of

Zi σ‖
~RT and ~q e

u κe
‖

κe
⊥

1 1.96 0.71 3.16 4.66

2 2.27 0.9 4.9 4.0

3 2.50 1.0 6.1 3.7

4 2.63 1.1 6.9 3.6

∞ 3.40 8 1.5 13.6 8 3.2

I.e., the equation for σ‖ is σ‖ = 1.96σ⊥ for Zi = 1, and σ‖ = 2.63σ⊥ for Zi = 4. Spitzer’s

result for resistivity is identical to Braginskii’s. Spitzer’s result for the energy equilibration rate

reduces to Braginskii’s result for mα/mβ ≪ 1.
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The NRL/Braginskii expressions for
~~W can be applied to arbitrary, non-straight, ~B fields,

as long as one properly identifies ẑ with b̂ = ~B/B. There is a potential ambiguity in the NRL

expressions: the proper relation is ∂vz/∂xz = (b̂ · ∇v) · b̂, and not ∂vz/∂xz = b̂ · ∇(v · b̂). For

example, Wzz = b̂ · ~~W · b̂ = 2b̂ · (∇~v) · b̂− (2/3)∇ · ~v. More generally, W = ∇v + (∇v)T −
(2/3)1∇ · v. Note that

~~P and
~~W are traceless (Wxx +Wyy +Wzz = 0) and symmetric. In

the strong B limit (Ωcτ ≫ 1, where τ is the collision time), Braginskii’s stress tensor becomes

diagonal to lowest order,
~~P = −η0[Wzzb̂b̂− (Wzz/2)(

~~1− b̂b̂)]. Even without strong collisions,

in the strong B limit (ω/Ωc ≪ 1, ρ/L ≪ 1) the rapid gyration of particles means that f(~v)

to lowest order must be isotropic perpendicular to ~B, so the pressure tensor must be diagonal,

yielding the CGL (Chew-Goldberger-Low) pressure tensor
~~Π = p‖b̂b̂ + p⊥(

~~1 − b̂b̂). The CGL

“double adiabatic” equations of state (neglecting heat flows and collisions):

d

dt

( p⊥

nB

)

= 0 (from µ conservation)

d

dt

(

T‖

(

B

n

)2
)

= 0
(if the magnetic field and plasma move together, T‖

changes only due to compression parallel to ~B)

The fluid equations are often simplified further (such as in simple MHD) by assuming

isotropic pressure and neglecting heat flows and collisional energy exchange between species:

∂p

∂t
+ ~v · ∇p = −Γp∇ · ~v or

d

dt

( p

nΓ

)

= 0

i.e., an adiabatic equation of state where a fluid element compresses or decompresses as an

ideal gas with p = CnΓ (C is constant as the fluid element moves, but may differ between

fluid elements because of the spatial variation of the initial temperature, so the above form

d/dt(p/nΓ) = 0 is more general). Γ = 5/3 in 3-D, or Γ = (2 + d)/d with d = # of degrees of

freedom in general. While this equation of state corresponds to zero heat flux (which may be

appropriate for waves that propagate faster than particles, ω/k ≫ vt), choosing Γ = 1 allows

one to consider the opposite limit of a heat flux so rapid that the temperature is uniform (this

isothermal closure may be appropriate for phenomena with ω/k ≪ vt). For some phenomena,

an even simpler closure of p = 0 (the cold-plasma approximation) is made. Intermediate cases

where ω/k ∼ vt gives rise to Landau damping. Approximate fluid models of Landau damping

use closures for higher moments that correspond to characteristic damping rates of order vt|k|,
the phase-mixing rate.6

Equations of state summary: adiabatic p ∝ n5/3, isothermal p ∝ n, cold-plasma

p = 0.

Braginskii’s equations are derived for a specific ordering and there are corrections that can

become important in some regimes. For example, see papers by Catto and Simakov9 circa

2002-2005. Mikhailovskii and Tsypin10 have terms like

∇ · ~Π ∼ c1∇~u+ c2∇~q
where c1 is Braginskii-type terms and c2 are Mikhailovskii’s new heat flux terms?

Spitzer’s resolution of the Fluid-Particle paradox: The fluid flow velocity is the sum of the

particle guiding center drifts plus a diamagnetic velocity (a.k.a. magnetization current). I.e.,

the current from a particular species is

~j = ~jE×B +~j∇B +~jcurv +~jpol + . . .+~jM
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where the magnetization current is given by ~jM = ∇ × ~M = −∇ × (cns〈µs〉b̂) = −∇ ×
((c/B)p⊥b̂), and 〈µs〉 is the mean magnetic moment for species s.
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5.4. MHD/One-Fluid Equations

The standard ordering assumptions to derive simple MHD are: slow time scales compared

to the gyrofrequency and large spatial scales compared to the gyroradius (similar to the drift

equations), ω/Ωci ∼ ρi/L ∼ ǫ ≪ 1. me/mi ≪ 1 is used and quasineutrality is assumed

(this orders out high-frequency electron plasma oscillations), and vA/c ≪ 1 is assumed (the

displacement current is ignored to order out light waves). MHD allows flows u ∼ c ~E ×
~B/B2 ∼ vti and β ∼ 1, though subsidiary orderings can be made later. Switch from two-fluid

variables to one-fluid variables: mass density ρ =
∑

α nαmα, mass-weighted flow velocity

ρ~u =
∑

α nαmα~vα, current density ~j =
∑

nαqαuα, and define pressure relative to ~u,
~~Π =

∑

αmαnα〈(~v − ~u)(~v − ~u)〉α ≈ p
~~1

Conservation of Mass
∂ρ

∂t
+∇ · (ρ~v) = 0

Momentum conservation, force balance ρ
d~u

dt
= −∇p +

~j × ~B

c

Energy conservation, adiabatic pressure
dp

dt
= −Γp∇ · ~u

Generalized Ohm’s Law (FLR but me → 0) ~E +
~u× ~B

c
= η~j − ∇pe

ne
+
~j × ~B

nec

Magnetostatic Maxwell’s Eqs:
∂ ~B

∂t
= −c∇× ~E ∇× ~B =

4π

c
~j

Other Maxwell’s equations: ∇ · ~B = 0 is only an initial condition, and ∇ · ~E = 4πσ is used

only to verify quasineutrality assumption. The last term of the generalzied Ohm’s law is the

Hall term, and the last two terms of the Ohm’s law are usually ρi/L smaller than the first two

terms and are neglected in standard MHD. Extensions of simple MHD are sometimes made to

keep a CGL pressure tensor or a full pressure tensor, ∇p → ∇ · ~~Π, using equations of state or

Braginskii transport coefficients from the previous section.

There are three main waves in MHD. Linearizing the MHD equations for a uniform

plasma with a straight magnetic field and an adiabatic equation of state δp = c2sδρ, the general

dispersion relation is

(ω2 − k2
‖
v2A)(ω

4 − ω2k2(c2s + v2A) + k2k2
‖
c2sv

2
A) = 0

where the Alfvén speed vA is given by v2A = B2/(4πρ), and the sound speed cs is given by

c2s = Γp/ρ = Γ(Ti + Te)/mi. Approximate formulas that interpolate for arbitary β are: the

shear Alfvén wave ω2 = k2
‖
v2A, the fast magnetosonic (compressional Alfvén) wave ω2 =

k2(v2A+c
2
s), and the slow magnetosonic wave, a.k.a. the slow mode (at high beta sometimes

called the pseudo-Alfvén wave, and at low beta it becomes an ion acoustic wave) ω2 =
k2zv

2
Ac

2
s/(v

2
A + c2s). (There is also the lesser known entropy mode, but this is eliminated by

using an adiabatic equation of state instead of the time-dependent pressure equation. In ideal

MHD the entropy mode is zero frequency and has δρ 6= 0 but δp = 0 (i.e., force balance is

maintained by opposite density and temperature gradients).)

?? δW Energy principle, Grad-Shafranov Equation, MHD equilibria in general geometry.

5.5. Waves

cold-plasma dielectric tensor? quasilinear theory?
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5.6. Stochasticity, Turbulence, and Transport

5.7. Tokamak Equilibrium

5.8. Common Plasma Physics Parameters

“Safety factor” (better, “inverse rotational transform” or “winding ratio”):

q =
2π

ι
=

dΨtor

dΨpol
≈ r

R

Bφ

Bθ

Magnetic shear

ŝ =
r

q

dq

dr

Random walk diffusion coefficient

D =
1

2

(∆x)2

∆t

Dclassical = νeiρ
2
e

Turbulent mixing length estimate

Dml =
γ

k2
⊥

Bohm

DBohm =
1

16

cTe
eB

Gyro-reduced Bohm (∆x ∼ 1/k ∼ ρ, ∆t ∼ 1/γ ∼ 1/ω∗ evaluated at k⊥ρ ∼ 1):

DgB =
cTe
eB

ρs
Ln

= csρs
ρs
Ln

Reaction rates are of the form Γ = nαnβ〈σv〉/(1 + δij), where the δij corrects for the case

of self-collisions.

?? The form of 1.5D transport equations in general geometry.

?? 0-D scaling relations for reactor design studies: Troyon beta limit β ∝ I/(aB), global

energy scaling, Greenwald density limit, pedestal scalings, H-mode power thresholds. shaping

effects, bootstrap fraction. Trubnikoff’s ECE cyclotron power losses.
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Quantum Mechanics

6.1. The essential quantum mechanic

Schrödinger’s Equation:

i~
∂

∂t
Ψ = HΨ =

(

p2

2m
+ V

)

Ψ =

(

− ~2

2m
∇2 + V

)

Ψ

Plane waves (with momentum p = ~k → −i~∂x and energy E = ~ω → i~∂t):

Ψ ∝ ei(kx−ωt) = ei(px−Et)/~

Commutators: [x, p] = xp− px = i~

d

dt
〈A〉 =

〈

dA

dt

〉

+
i

~
〈[H,A]〉

Heisenberg Uncertainty Principle 〈(∆A)2〉〈(∆B)2〉 ≥ 1
4
||〈ψ|[A,B]|ψ〉||2.

“Natural units” uses 3 fundamental units: action (or angular momentum) (~), velocity c,
and energy eV . The 3 fundamental units of cgs are length, mass, and time, and “action” has

units of [momentum]×[length]. . In natural units, ~ = c = 1, and all physical units are

reported in “eV”.

?? Could add: Harmonic oscillator, Variational methods, Bound-state non-degenerate per-

turbation theory, degenerate perturbation theory, time-dependent perturbation, scattering the-

ory, Born approximation, angular momentum and spin, atomic energy levels.
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Astrophysics

1 parsec (pc) = 3.086× 1016m = 3.262 lyr

1 light year (ly) = 9.461× 1015m

1 Julian year = 365.25 days = 3.156× 107s

Approx. a hundred, thousand, million (1011) stars per galaxy.

Approx. a hundred, thousand, million (1011) galaxies in the visible universe.

Approx. 1 supernova explosion per galaxy per century.

Age of the universe: 14 billion years.

?? Could add a length/mass scale object plot, starting with largest scale at the size of the

(visible) universe, clusters, groups, elllitical and spiral clusters, AGN/MBH, globular clusters,

red giants, stars, white dwarfs, neutron stars, jupiter, earth, etc. (like Padmanabhan Table 1.1

or elsewhere), and continuing down to molecules, atoms, nucleons...

Add a phase diagram plot like Fig. 1.1 of Padmanabhan?

Could add a time history plot: big bang, first 3 minutes, light element fusion, recombina-

tion, first stars, reionization, galactic formation, age of the solar system, earth, ...

Stellar structure, stellar life cycle...

Useful numbers: 0 ◦ C = 273.15 K

210 ∼ 103

26
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