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In preparation for an experimental study of magnetorotational instability (MRI) in liquid metal, we
explore Couette flows having height comparable to the gap between cylinders, centrifugally stable
rotation, and high Reynolds number. Experiments in water are compared with numerical simulations.
Simulations show that endcaps corotating with the outer cylinder drive a strong poloidal circulation that
redistributes angular momentum. Predicted azimuthal flow profiles agree well with experimental
measurements. Spin-down times scale with Reynolds number as expected for laminar Ekman circulation;
extrapolation from two-dimensional simulations at Re � 3200 agrees remarkably well with experiment at
Re � 106. This suggests that turbulence does not dominate the effective viscosity. Further detailed
numerical studies reveal a strong radially inward flow near both endcaps. After turning vertically along
the inner cylinder, these flows converge at the midplane and depart the boundary in a radial jet. To
minimize this circulation in the MRI experiment, endcaps consisting of multiple, differentially rotating
rings are proposed. Simulations predict that an adequate approximation to the ideal Couette profile can be
obtained with a few rings.
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1. Introduction

Laboratory experiments using liquid metal have made
important tests of magnetohydrodynamic (MHD) theories
and processes. Examples include laboratory demonstration
of the Alfvén wave,1) magnetofluid convection,2) and
dynamo action.3) Recently, a new kind of liquid-metal
MHD experiment, motivated by astrophysics, has been
proposed by the authors4,5) to study magnetorotational
instability (MRI), which is believed to dominate the trans-
port of angular momentum in electrically conducting
accretion disks. Liquid gallium will be used in a Couette
flow between cylinders of radii r1 < r2 and angular
velocities 0 < �2 < �1 but r22�2 > r21�1 so that the flow
will be stable against conventional Taylor–Couette instabil-
ities (TCI).

Both TCI and MRI are governed by the radial profile of
azimuthal velocity, v’ðrÞ. In an inviscid fluid, TCI occurs
wherever the specific angular momentum, J � rv’, decreas-
es outwards, dJ2=dr < 0. If the fluid is also a perfect
electrical conductor, MRI occurs when the angular velocity,
� � v’=r, decreases outwards, d�2=dr < 0. In this case,
MRI can occur in an arbitrarily weak axial magnetic field;
the field must at any rate be weak enough so that the transit
time of Alfvén waves across the flow is less than ��1. The
usual situation in accretion disks, which are often excellent
conductors, is � / r�3=2 (Kepler’s law) so that TCI is
stabilized but MRI is not. In a fluid with large resistivity and
finite but small viscosity, such as liquid metals, the range of
flow parameters unstable to MRI shrinks significantly, while
the range unstable to TCI is effectively unchanged. There-

fore, laboratory flows must be set up with precision in order
to demonstrate MRI while suppressing TCI.

In previous linear stability analyses of gallium Couette
flow,4,5) we adopted periodic boundary condition in the
vertical (axial) direction, ignoring the effects of the top and
bottom interior surfaces of the vessel (‘‘endcaps’’). The
choice of vertical boundary conditions is probably incon-
sequential when the height of the flow (H) is much larger
than the gap width, as in Taylor’s classic experiments.6) Our
experimental volume �Hðr22 � r21Þ will be limited by the
availability of gallium, a far more expensive fluid than
water, while the gap must be wide enough so that the
magnetic diffusion time is not much shorter than the rotation
period. These considerations drive us to an aspect ratio
H=ðr2 � r1Þ � Oð1Þ, in which the endcaps may assume great
importance.

We have performed a water experiment and complemen-
tary numerical simulations to study the effects of the
endcaps and, if possible, to find a way to set up a short
Couette flow that is unstable to MRI yet stable against TCI.
Since the viscosities of the two fluids are similar, standard
visualization techniques in water serve to predict the flow
structure in the opaque liquid gallium, at least in the absence
of magnetic field.

Since the pioneering work by Benjamin,7–9) TCI in finite
size cylinders have been studied in detail with stationary
outer cylinders,10–20) and with rotating outer cylinders.21) In
our TCI-stable flows, the outer cylinder must rotate. To
allow a wide gap, we use a relatively small radial aspect
ratio � ¼ r1=r2 ¼ 0:256, so that the commonly used narrow-
gap approximation does not apply. The rotation rate of the
inner cylinder (�1) is so high that the Reynolds number
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is orders of magnitude larger than typical Couette flow
experiments. In connection with research on the tropospheric
jet stream, Dunst performed a water experiment in a short
cylindrical annulus with parameters similar to ours.22) We
will comment on this paper in §5.

The outline of the paper is as follows. Section 2 describes
the experimental apparatus and most of our experimental
results, except for spin-down measurements, which are
deferred to §4. Numerical methods are described in §3, and
numerical simulations are presented and compared with
experiment in §4. Section 5 contains a summary of our main
results and a discussion of their significance.

2. Water Experiment

2.1 Experimental apparatus
The experiments are performed in a short circular Couette

flow illustrated in Fig. 1. A container, made of transparent
acrylic plates and cylinders, is mounted on a stainless steel
flange which is driven by a DC motor (1.25 HP, by Creative
Industries). The speed is measured by a laser-based
tachometer. The inner cylinder, made of aluminum, is
inserted through a lip seal from the top and is driven in the
direction of the container by an AC motor (3 HP, by Lincoln
Motors) with a controller. For given speeds of inner and
outer cylinders, �1 and �2, the flow typically requires about
10–30 s to reach a steady state, in which most of the flow
measurements are performed.

The vertical height of water is H ¼ 10 cm. We use the
cylindrical coordinates (r; ’; z) with z ¼ 0 cm in the mid-
plane. The endcaps are located at z ¼ �5 cm.

2.2 Measurement of azimuthal flow profiles
In order to measure flow profiles as a function of radius

and height, small particles with sizes on the order of 1 mm
made of mica and titanium dioxide (‘‘Sparkle’’ by Lee S.
McDonald, Inc.) are mixed into the working fluid (water).
Being small, the particles follow the flow well. A sheet of

light of approximate thickness of 0.5 cm is generated by a
horizontal slot in front of a bright halogen light source. An
electronically gated intensified-CCD camera (by ITT Corp.)
images the flow illuminated by the sheet, whose height is
adjustable. Images are saved to a PC using a frame-grabber
at a rate of 60 images per second. Particles appear in the
images as streaks, whose length indicates flow speed. By
combining measurements at many radii and heights, the
azimuthal flow can be mapped out as a function of r and z.
The measurements were calibrated, at various heights, by
imposing uniform rotation, �1 ¼ �2 ¼ 150 rpm.

The experimental results are shown in Fig. 2 for the case
of �1 ¼ 2000 rpm and �2 ¼ 150 rpm. There are a few
characteristics worth mentioning here. First, the measured
velocity is significantly smaller than in an ideal, infinitely
long Couette flow having the same �1 and �2 [eq. (A·1)].
The discrepancy is largest at small radii. Secondly, the
velocity must rise sharply from �3m/s to match the inner
cylinder at �8m/s. Unfortunately, diagnostic access to the
flow is limited near the inner, outer, and top boundaries.
Thirdly, the azimuthal velocity decreases with radius except
at the locations near the outer edge, whereas it would
decrease everywhere in the ideal Couette flow. Fourthly, the
dependence on z is at most comparable to the experimental
errors. This is consistent with Taylor–Proudman theorem23)

which predicts small z variations in a rotating flow with
small viscosity.

The observed profile of azimuthal flow has unfavorable
implications for the proposed MRI experiments. The goal is
to set up a flow unstable to MRI while stable to TCI.
However, the sharp decrease of v’ near the inner cylinder
will certainly incite TCI while the rest of the flow, because
v’ falls more slowly than intended, will be more resistant to
the MRI. As a result, the system as a whole could have a
mixture of both instabilities or, even worse, only the TCI.
The observed deviations from ideal Couette flow are due to
the endcaps. They need to be understood and, if possible, to
be minimized in order to demonstrate MRI unambiguously.
We note that a proposed MRI experiment using sodium24)

should suffer from the same complications since its aspect
ratio is also small, viz., H=ðr2 � r1Þ ¼ 2.
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Fig. 1. Schematic of experimental apparatus. Radii of the inner and outer

cylinders are r1 ¼ 3:8 cm and r2 ¼ 14:9 cm, respectively. The height is

H ¼ 10 cm.
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Fig. 2. Measured v’ profile at different z when �1 ¼ 2000 rpm and �2 ¼
150 rpm.
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3. Numerical Methods

3.1 Mathematical model and algorithm
We have developed a two-dimensional computer code to

simulate the water experiment described in the previous
section. We use the stream function-vorticity method25) in
cylindrical coordinates (r; ’; z), as illustrated in Fig. 3.
Assuming axisymmetry, @’ðvr; v’; vzÞ ¼ 0, and incompres-
sibility, r � v ¼ 0, we can express the poloidal components
of the flow in terms of a stream function,  :

vr ¼
1
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; ð2Þ
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Since the normal component of velocity vanishes, the
boundary conditions for  are

 ¼ 0 at r ¼ r1; r2; ð5Þ
 ¼ 0 at z ¼ �H=2: ð6Þ

The boundary conditions for v’ are as follows. At the
inner and outer cylindrical walls,

v’ ¼ r1�1 at r ¼ r1: ð7Þ
v’ ¼ r2�2 at r ¼ r2: ð8Þ

Since the top and the bottom endcaps of the vessel rotate
with the outer cylinder in our apparatus, the boundary
condition there are

v’ ¼
r

r2
�2 at z ¼ �H=2: ð9Þ

The no-slip conditions on vr at z ¼ �H=2 and on vz at
r ¼ r1; r2 yield boundary conditions for !’ via eqs. (2)–(4):
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The fundamental variables in our numerical simulation
are v’ and !’. Their governing equations are
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We use second-order spatial differences on a uniform
grid, with typical size Nr � Nz ¼ 100� 100, and a fourth-
order Runge–Kutta method for the temporal integration,
with typical time step �t ¼ 7:273� 10�3ðr2 � r1Þ=r1�1.

The algorithm for each time step is as follows.
(1) Integrate the basic eqs. (12) and (13) to get new

!’ði; kÞ and v’ði; kÞ in the bulk region (2 � i � Nr � 1,
2 � k � Nz � 1).

(2) Solve eq. (4) for  with the new !’ as source term and
boundary conditions (5) and (6).

(3) Set the boundary values of !’ and v’ using eqs. (7),
(8), (10) and (11).

(4) Get the auxiliary variables vr, vz, Dr, Dz, and J from
eqs. (2), (3), (14)–(16).

3.2 Simulation method
The boundary conditions (7)–(9) require a jump of v’ðrÞ at

the corners ðr ¼ r1; z ¼ �H=2Þ. A commonly used tech-
nique to avoid this singularity is to make a small ‘‘buffer
region’’ r1 � r � r1 þ �, in which vðr;�H=2Þ varies
smoothly.26) But we found that such a ‘‘buffer region’’ is

(a) (b)

Fig. 3. Illustrations of physical system (a) and simulation system (b).
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not necessary in our scheme. Following the standard
technique, we first set � to 10% of the gap width r2 � r1,
and then gradually reduced it to the radial mesh size, �r. In
the latter case the angular velocity of the boundary jumps
from �1 to �2 between the innermost two grid points (i ¼
1; 2). We confirmed that simulation results are not affected
by the size of �. All calculations shown in this paper use
� ¼ �r.

All calculations begin with both the boundaries and the
fluid at rest. The boundaries (side walls and endcaps)
accelerate to their final angular velocities over a short time
interval 0 � t � �. We confirmed through many trials that
the final state of the flow does not depend upon �. All
simulations shown here were calculated with � ¼ ðr1 � r2Þ=
ðr1�1Þ, our unit of time.

4. Results of Simulations

4.1 Parameters and units
The simulations shown in this section use the same

dimensions and rotation rates as as the experiments describ-
ed in §2. The computational units of length, velocity, and
time are ‘ ¼ r2 � r1, v ¼ r1�1, and ‘=v.

The Reynolds number of the experiment [eq. (1)] is too
high for direct numerical simulation. So we start by
simulating very low Re and increase it until we find
characteristics of the flow that depend only weakly on Re or
follow a clear scaling. The largest simulated Re that we
report is 3200.

4.2 Low Re flows
The sudden acceleration of the boundaries at the begin-

ning of the simulation induces an intense flow inside the
vessel. At small values of the final rotation rate, i.e., small
Re, the fluid quickly relaxes to a laminar steady state.

Figure 4 shows the azimuthal speed, v’, for Re ¼ 1. The
maximum speed is achieved at the inner cylinder (on left in
Fig. 4), where v’ ¼ 1. In this low Re limit, poloidal flow is
almost absent; the maximum value of vr and vz is 7:5�
10�4. Note that the jump in � at the lefthand corners of the
boundary does not prevent a smooth solution elsewhere.

Actually, as Re ! 0, the solution for the flow can be
found in closed form. If we set vr ¼ vz ¼ !’ ¼ 0 in the
basic equations (12) and (13), the stationary azimuthal flow
v’ satisfies

� r2 �
1

r2

� �
v’ ¼ 0; ð18Þ

with the boundary conditions (7)–(9). Wendl27) has given the
analytical solution of this equation with slightly different
boundary conditions, corresponding to �2 ¼ 0. The solution
to our problem is given simply by adding a uniformly
rotating component r�2 to Wendl’s solution. The v’ profile
shown in Fig. 4 is essentially identical to the analytical
solution thus constructed. This serves as one benchmark for
our code.

4.3 High Re flows
We have seen that poloidal flow is negligible in the low

Re regime. As we increase Re, poloidal circulation develops
and the azimuthal flow changes. Figure 5 shows cross
sections in the poloidal (r; z) plane for different Re numbers,
from 100 to 3200. Each panel in Fig. 5 is a snapshot of the
nonlinearly saturated state.

Figure 5(a) shows that v’ has much the same pattern at
Re ¼ 100 as at Re ¼ 1 (Fig. 4). In both cases, it is
symmetric about the horizontal plane z ¼ 0 and time
independent. The flow becomes unsteady at Re > 400. The
asymmetric profile of Re ¼ 800 [Fig. 5(d)] results from
unsteady flow. All flows above this Reynolds number
fluctuate, with an amplitude that increases with Re.

One of the important features shown in Fig. 5 is that the
contours of v’ tend to be parallel to the rotation axis (z). This
is a manifestation of the Taylor–Proudman theorem, viz.,
that low-frequency horizontal motions tend to be independ-
ent of height in an inviscid fluid rotating about a vertical
axis.28) The Taylor–Proudman theorem is usually discussed
for an almost rigidly rotating fluid, but as shown in the
Appendix, a similar tendency exists in differentially rotating
flow provided dJ2=dr > 0.

Another characteristic feature of the v’ contours in Fig. 5
is their tendency to concentrate towards the inner cylinder
(at left) at large Re. This shows the development of a
boundary layer. Boundary layers also develop on the top and
bottom endcaps [see panels (e) and (f)]. Note also the
increasingly sharp protrusion of the contours on the inner
cylinder near the midplane.

The development of the poloidal (vr; vz) flow is equally
interesting. It is shown in the vector plots of Fig. 6 for the
same simulations as in Fig. 5. Vectors appear at every third
grid point in r and z. Their lengths indicate that the poloidal
component becomes stronger at higher Re. The arrow
lengths are linearly normalized. The amplitude of the unit
velocity, that is the rotation speed of the inner cylinder, is
indicated by arrows on the top of the panels (a) to (f). A
radially outward, jet-like flow is seen near the midplane in
the higher-Re simulations. It is undoubtedly the counterpart
of the spike in the v’ contours in Fig. 5. This jet-like flow
was not expected before we began our numerical simu-
lations. Its structure will be analyzed later. Here we show the
temporal behavior of the poloidal flow, including the jet.

The jet is unsteady, with a periodic vertical flapping
motion. Figure 7 shows the time development of the stream
function,  , for Re ¼ 3200 over almost half of the period of
oscillation of the jet. The period of the oscillation is about
36:95 in the normalized time. Figure 7(a) is a snapshot taken
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Fig. 4. Simulated v’ profile when Re ¼ 1.
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at t ¼ 1326:68, and subsequent panels (b) to (f) are taken
with regular 5:82 interval time. Throughout the oscillation,
the root of the jet (at r ¼ r1; z ¼ 0) remains fixed while its
tip flaps violently up and down. The vector plot in panel (f)
of Fig. 6 shows a snapshot of this flapping motion at t ¼
1294:67.

4.4 Profile of azimuthal flow
Figure 8 shows v’ðrÞ for different Reynolds numbers

(200 � Re � 3200) at z ¼ 4 cm. (This is the height where
the most reliable experimental data can be obtained.) One
can see from this figure that the v’ profiles are consistent for
the higher Re flows, Re ¼ 800, 1600, and 1600. Note also

 
 

(a) Re=100 

 
 

(b) Re=200 

 
 

(c) Re=400

 
 

(d) Re=800 

 
 

(e) Re=1600

 
 

(f) Re=3200

Fig. 5. V’ profile.
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that the profiles for Re ¼ 1600 and 3200 are very close,
suggesting possible convergence at large Re.

In Fig. 9, we have superimposed the experimental data for
v’ at z ¼ 4 cm (shown also in Fig. 2) on the corresponding
profiles from simulations at Re ¼ 1600 and 3200. The
agreement is remarkable when one considers that the highest

Re achieved in simulations, which are in 2D, is a factor of
300 smaller than that of the experiment, which is 3D.

We have seen in Fig. 5 that the high Re (> 400) flows are
time dependent. To show the amplitude of the temporal
fluctuations, snapshots of v’ for Re ¼ 1600 are super-
imposed in Fig. 10. (The curves in Fig. 9 are time averages.)

 
 

(a) Re=100 

 
 

(b) Re=200 

 
 

(c) Re=400

 
 

(d) Re=800 

 
 

(e) Re=1600

 
 

(f) Re=3200

Fig. 6. Poloidal flow profile.
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We can see that the fluctuation is larger in the outer half of
the flow (r > 9 cm). This can be explained by the flapping
motion of the jet (see Fig. 7).

Both experiment and simulation indicate that the v’
profile is concave in the outer half of the flow (Fig. 9), and
that v’ðrÞ is an increasing function of radius near the outer
cylinder (12 cm < r < 15 cm). The fluid in this region
rotates almost rigidly, on average, at the angular velocity
of the outer cylinder and endcaps (�2).

Snapshots of the angular momentum J ¼ rv’ are shown in
Fig. 11 for the same simulation as in Fig. 10. Note that
dJ=dr > 0 for the ideal Couette flow (solid curve) since we
aim for stability against the Taylor–Couette mode. An
interesting feature of this figure is that the simulated J curve
is even flatter than the ideal profile. This is a consequence of
the poloidal circulation and jet, which tend to mix angular
momentum in the interior of the flow.

4.5 Jet
In order to extract essential features of the spatial structure

of the flow, it would be convenient if we could suppress its
temporal fluctuations, especially the flapping of the jet. For
this purpose, we have made a set of simulations with the
following symmetries imposed:

vrðr; zÞ ¼ vrðr;�zÞ;
v’ðr; zÞ ¼ v’ðr;�zÞ;
vzðr; zÞ ¼ �vzðr;�zÞ;

Fig. 12 shows the result when Re ¼ 1600. It is found that the
flow is stationary. One can perhaps interpret this state as an
average of the flow over one period of the jet’s flapping
motion.

The panel (a) in Fig. 12 clearly shows the structure of the
poloidal circulation. It consists of three main parts; (i)
inward flow in boundary layers at the endcaps; (ii) axial flow
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Fig. 7. Contour plots of the stream function in a time sequence showing the oscillatory motion of jet (Re ¼ 3200).
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towards the midplane on the inner cylinder; and (iii) an
outward jet centered on the midplane.

The boundary layer on the inner cylinder has a character-
istic triangular shape [panel (b) in Fig. 12]. The contours are
‘‘squeezed’’ by the inward boundary-layer flows near the top
and the bottom caps, while, the tip of the triangle is ‘‘pulled’’
by the outward jet flow.

The contour lines of v’ and � [Figs. 12(b) and 12(c)]
indicate that most of the flow obeys the Taylor–Proudman

(T–P) theorem. Although the T–P state expands as Re

increases, it cannot extend to the endcaps because of the no-
slip boundary conditions there. As long as the flow remains
laminar, the regions that depart from the T–P state must
shrink as Re increases in order that viscous forces continue
to be important in those regions. Because the pressure
gradient drives an inward flow at both endcaps, mass
conservation requires a compensating outward flow some-
where in the interior of the fluid. This is the jet.
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The contour lines of �, Fig. 12(c), show that the outer
half of the fluid rotates approximately at the angular velocity
of the outer cylinder and endcaps, as we have already seen in
Figs. 10 and 11. We have also seen that the angular
momentum J tends to be uniform in the interior due to the
poloidal circulation, as is clearly shown by the central void
in the contour plot of J in Fig. 12(d).

The structures of the azimuthal and poloidal flows are
summarized schematically in Fig. 13.

One interesting but unexpected finding of these simula-
tions is the existence of the jet. Its characteristics are
summarized as follows: (1) The jet becomes thinner with
increasing Re, and its width is similar to that of the boundary
layers on the caps; and (2) the jet is steady and symmetric at
low Re but flaps vertically above a critical Reynolds number
between 400 and 800.

The flapping motion of the jet presumably results from an
instability that is antisymmetric about the midplane z ¼ 0.
Araki et al.29) investigated a spherical Couette flow with
wide gap and found a similar narrow and unstable outward
jet-like flow. Theoretical investigation of the instability of
the jet might be an intriguing research topic for students of
instability and bifurcation in rotating flows. It is, however,
beyond the scope of this paper and we leave it to future
studies.

Experimentally, it is not straightforward to confirm the
existence of a jet-like radial flow directly. Since the
maximum radial velocity in the simulation is only a few
percent of the large azimuthal flow, the streaks on the
camera images would rotate only a few degrees, too little to
be resolved by our measurements. At lower rotation speeds,
we were able visually to follow relatively large and neutrally
buoyant particles in the water. We observed rather rapid

outward motions at the midplane after the particles were
‘‘sucked’’ into the boundary layers at the top or bottom
endcaps. This is consistent with the jet-like flows indicated
by the simulations.

4.6 Boundary layers
The width of the boundary layers (including the jet)

depends on Re. As Fig. 6 indicates, higher Re causes thinner
boundary layers. Actually, the inward (negative vr) flow on
the top and bottom boundaries is induced by the same
mechanism as classical Ekman circulation: a viscous
reduction of v’ in the boundary layer, leading to an
imbalance between outward centrifugal force and the
pressure gradient. The boundary layers at the endcaps in
our system do not have uniform width. As Figs. 12(a), 12(b),
and 12(d) indicate, these layers are thick near the inner
cylinder, reaching roughly 10% of the vessel’s height (H).
The width monotonically declines with increasing r,
disappearing into the rigid rotation part of the outer part of
the fluid. [See also Fig. 13(b).]

For small departures from rigid rotation, the Ekman layer
thickness is �E ¼

ffiffiffiffiffiffiffiffiffi
�=�

p
, where � is the kinematic viscosity.

Our system is very far from rigid rotation, so it is not
immediately clear what to substitute for �. If one uses the
mean frequency

ffiffiffiffiffiffiffiffiffiffiffiffi
�1�2

p
, then for our geometry, �E=H 	

1:24Re�1=2, hence 	 3% at Re ¼ 1600. In fact, we estimate
from our simulations that the fractional thickness of the
boundary layers is �10% at this Reynolds number. For small
departures from a differentially rotating state, however, we
believe that it is more appropriate to scale �E with the
epicyclic frequency,

� ¼
1

r3
@J2

@r

� �1=2

: ð19Þ

This is the maximum frequency of small axisymmetric
motions (inertial oscillations) in the inviscid interior of the
fluid, so it represents the inertial forces that must be
balanced by viscous ones in order to drive a radial flow
along the boundaries. Since � reduces to 2� for rigid
rotation, we take �E ¼

ffiffiffiffiffiffiffiffiffiffi
2�= ���

p
. A characteristic value for � is

��� ¼ 2
r42�

2
2 � r41�

2
1

r42 � r41

� �1=2

ð20Þ

This leads to �E=H ¼ 3:39Re�1=2, or �8:5% at Re ¼ 1600,
which is about three times larger than the previous estimate
and closer to the results of the simulations.

A prediction of the latter scaling is that the Ekman-layer
thickness should increase along a sequence in which
ðr22�2Þ=ðr21�1Þ approaches unity (from above) while the
mean rotation

ffiffiffiffiffiffiffiffiffiffiffiffi
�2�1

p
is constant.

4.7 Flow in shorter cylinder
The numerical simulations presented so far have been

performed for cylinders of height H ¼ 10 cm, hence about
the same as the width of the gap (r2 � r1 ¼ 11:1 cm), as in
our laboratory experiment. In order to elucidate the effects of
the top and bottom endcaps on the fluid motion, we have
also performed numerical experiments for shorter heights:
H ¼ 8, 6, 2, and 1 cm. Figure 14 shows the corresponding
flow profiles after nonlinear saturation. The Reynolds
number, which is based on the cylinder radii rather than H

Taylor-Proudman rig
id

body

ro
ta

tio
n

(a)

(b)

Fig. 13. Schematic flow structure. (a) The Poloidal flow in the boundary

layers and the jet. (b) Azimuthal flow structure.
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[eq. (1)] is 1600 in all cases. Compare these with Fig. 5(e).
In the case of the shortest height (H ¼ 1 cm), most of the

fluid rotates at the angular velocity of the endcaps. This is
not surprising, since in the limit of infinitesimal height, the
fluid would ‘‘adhere’’ to the endcaps. The more rapidly
rotating inner cylinder influences the flow over a radial
distance comparable to H. Comparing the panels of Fig. 14,
we see that the domain of rigid rotation shrinks as H grows,
but it still exists when H ¼ 10 cm, as summarized in the
schematic Fig. 13(b). The existence of such a region in a
short Couette flow has also been reported by Dunst.22)

4.8 Spin down
To better quantify the effects of circulation, a series of

experiments and simulations have been performed to study
the transient flow when both cylinders (and endcaps) are
suddenly stopped. The rate of spin down reflects the
efficiency with which the circulation transports angular
momentum and the viscous coupling to the walls. In the
experiments, starting from steady rotation both cylinders
were braked to a complete stop within about one second.
The flow speed in a small volume was measured against
time, as shown in Fig. 15.

A simple exponential fit to the measured data is not
appropriate because the spin-down time � itself depends on
angular velocity:

� ¼
H

2�E ���
¼

H

2
ffiffiffiffiffiffiffi
� ���

p ; ð21Þ

where the factor 2 comes from the fact that the circulation
has two cells and the Ekman layer thickness �E is taken to beffiffiffiffiffiffiffiffiffi
�= ���

p
( ��� is an averaged angular velocity). Thus, we have

d ���

dt
¼ �

���

�
/ � ���3=2; ð22Þ

which leads to

���ðtÞ ¼
���ðt0Þ

1þ
t � t0

�

� �2
: ð23Þ

The measurements are fitted to eq. (23) where the steady
state angular velocity ���ðt0Þ is known while t0 and � are
fitting parameters. The fitted line is shown by the dashed line
in Fig. 15 and the spin down time, � ¼ 11:2� 0:9 s, is
obtained.

Spin down has also been simulated by imposing a sudden
stop of all boundaries. Figure 16 shows results for azimuthal
velocity in the same volume as in the experiment for
Re ¼ 3200. Again, the spin down time is obtained by fitting
eq. (23), with the result � ¼ 0:82 s. Figure 17 displays �
determined similarly for a series of simulations at different
Re. The trend is well fit by a power law (dashed line),

� ¼ 0:012Re0:53 s: ð24Þ

For the purposes of Fig. 17 and eq. (24), we fix �1 ¼
2000 rpm and �2 ¼ 150 rpm (as in the experiment) and
imagine that the Reynolds number of the simulations is

 
 

H=8cm

 
 

Hz=6cm

 
 

Hz=2cm

 

Hz=1cm

Fig. 14. Profiles of azimuthal flow v’ for Re ¼ 1600 for shorter heights:

H ¼ 8 cm, 6 cm, 2 cm, and 1 cm. The corresponding picture for H ¼
10 cm is Fig. 6(e).

Fig. 15. Experimentally measured azimuthal velocity in the region ðr; zÞ 2
ð11:5� 1; 3� 0:5Þ cm during spin-down after both cylinders and endcaps

are stopped at approximately t ¼ �1 s. Dotted line is azimuthal velocity

in steady state when �1 = 2000 rpm and �2= 150 rpm. Dashed line is a

fit of the form (23).

J. Phys. Soc. Jpn., Vol. 73, No. 9, September, 2004 A. KAGEYAMA et al. 2433



controlled by varying the viscosity. If the viscosity is fixed
and the rotation rates vary (as would be more convenient in
an experiment) then the spindown time scales as Re�0:47.
The power law (24) agrees excellently with the simple
estimate given by eq. (21),

� ¼
H

2
ffiffiffiffiffiffiffi
� ���

p

¼
H

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1ðr2 � r1Þ�1

���Re�1
p ¼ 0:011Re1=2 s:

ð25Þ

[For comparison, eq. (A·9) predicts tE ¼ 0:0095Re1=2 s.] The
experimental point, which was not included in the fit, is
rather close to the extrapolation of eq. (24): 11:2� 0:9 s
observed vs 17� 0:9 s predicted, using � ¼ 0:01 cm2 s�1 for
water.

5. Summary and Discussion

Motivated by our proposed magnetohydrodynamic ex-
periment,4,5) we have studied a short, wide-gap, hydro-
dynamic Couette flow by experiment and numerical simu-
lation. A challenge of the gallium experiment will be to set
up an initial rotation profile that is stable to the Taylor–
Couette instability (TCI) while unstable to the magnetorota-
tional instability (MRI) when an appropriate magnetic field
is applied. It is found experimentally that the azimuthal flow
v’ðrÞ is significantly different from that in an infinitely long
circular Couette system. In order to understand the under-
lying physics, numerical simulations have been performed
using the same boundary conditions as in the experiment.
The measured profile of v’ is successfully reproduced by the
simulations, which show a strong poloidal circulation driven
by boundary layers at the endcaps. Furthermore, excellent
agreement between experiment and simulation is found for
the spin-down time when the Reynolds number is scaled.

These agreements are rather remarkable considering that
there is a factor of 300 between the Reynolds numbers of the
simulations and of the experiments, and that the simulations

are performed in two dimensions, while the experiments are
three-dimensional. The suggestion is that the essential
dynamics of the system do not change when Re is raised
from 3200 to about 106.

Is it plausible that the the boundary layer remains laminar
up to the experimental Reynolds number Re ¼ 8:8� 105?
Perhaps: nonrotating flow over a flat plate remains laminar
below Recrit 	 5� 105; perhaps more relevantly for our
experiment, Recrit 	 3� 105 for a disk spinning freely in an
extended, nonrotating fluid, where Re � �R2=� based on the
angular velocity and radius of the disk.30) For fully turbulent
boundary layers, the stress (� = lateral force per unit area)
exerted on the boundary is parametrized by a friction
coefficient Cf � �= 1

2
	V2

1, where V1 is the relative velocity
of the fluid well outside the boundary layer. It is known that
Cf varies slowly with Re when Re is large. In flow over
smooth surfaces at Re 
 106, for example, von Kárman
prescribes30) Cf ¼ 0:455ðlog10 ReÞ�2:58. Let us suppose that
we can take Cf to be constant over the entire boundary
(cylinders and endcaps) for the purpose of estimating the
spin-down rate. Taking advantage of the fact that the specific
angular momentum varies slowly within our steady-state
Couette flow and defining �JJ � ðr21�2

1 þ r22�
2
2Þ=2, we esti-

mate that the total torque on the fluid shortly after the
cylinders stop is � 	 2�	ðH þ r2 � r1Þ �JJ2Cf . The total
angular momentum of the fluid is L 	 �	ðr22 � r21ÞH �JJ. Thus
the spin-down time becomes

�f �
L

�
¼

Hðr22 � r21Þ
ðr22�2 þ r21�1ÞðH þ r2 � r1Þ

	 0:015C�1
f s:

This agrees with the observed value of 11 s for Cf ¼ 1:3�
10�3. For comparison, von Kárman’s formula predicts
Cf ð106Þ 	 4:5� 10�3. Our Reynolds number however, is
not far from Recrit, so turbulence may not be fully developed.
Indeed, alternative definitions of the Reynolds number fall
even closer to the critical value: for example, �JJ=� 	 3:0�
105.

Fig. 16. Like Fig. 15, but for a simulation at initial Re ¼ 3200. The

boundaries are stopped at t ¼ 6:0747 s.

Fig. 17. Spin down time vs Re for simulations (asterisks) and experiment

(diamond). Dotted line is a fitted curve to the results from simulation

only.
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Detailed analysis of the simulations show that the poloidal
circulation consists of two cells. A strong radially inward
flow forms near each of the endcaps in a thin boundary layer.
After turning into a vertical flow along the inner cylindrical
wall, these layers merge at the midplane into a jet-like,
radially outward flow to complete the circulation. The
existence of such a jet-like feature appears not to have been
recognized previously. Dunst performed a water experiment
in short cylindrical annulus with similar condition to ours.22)

One set of five experiments by Dunst was carried out with
rigid endcaps fixed to the outer cylinder. (Other experiments
were done with a free upper surface.) Dunst reported the
formation of a two-cell pattern as well as a region of rigid-
body rotation in the outer part of the fluid. However, there
was no description of a jet between the cells. It is possible
that the jet was just overlooked. We note that although we
have preliminary evidence for a jet-like flow at the midplane
between two cells in the experiment, it is difficult to
visualize it and to measure its detailed characteristics. We
also carried out simulations in which the outer cylinder is
stationary, leading presumably to TCI instabilities. It is
interesting that the jet does not form in the latter situation,
which has been the main focus of experimental effort in
short Couette flows.

We have seen that a region of rigid-body rotation occurs
in the outer part of the system. This has been explained by
the tendency of the flow to ‘‘adhere’’ to the outer cylinder
and endcaps. An alternative setup of the apparatus would be
to have the caps rotate rigidly with the inner rather than the
outer cylinder. In that case, rigid-body rotation would be
expected to appear in the inner part of the flow. Actually,
such a fluid-dynamical system has been investigated in the
literature in connection with hard disk drives for comput-
ers.31–35) It has been shown in these studies that most of the
fluid rotates rigidly with the disks.

The poloidal circulation, and especially the jet, found in
this study are an interesting phenomenon in rotating fluids.
They transport angular momentum efficiently and reduce the
free energy available for shear-driven instabilities. There-
fore, we will need to minimize this circulation in the MRI
experiment.

One idea for reducing the effect of endcaps is to use a
tapered section.36) Another idea is to divide the cap into two
parts: the inner one fixed to the inner cylinder, and the outer
one fixed to the outer cylinder. Here, we expand on the latter
idea. We divide the endcaps into multiple rings that rotate
independently (see Fig. 18). The angular velocity of each
ring is chosen according to its center radius and the circular
Couette flow.

Figure 19 shows the profiles of v’ at Re ¼ 1600 for three
choices of the number of rings. The parallel contour lines in
the figure indicate that the fluid is in a Taylor–Proudman
state. The effect of the endcaps is highly localized in its
vicinity and the poloidal circulation is suppressed almost
perfectly. Without the circulation, the stationary flow in this
differentially rotating system is very close to that of an
infinitely long, ideal circular Couette flow. This is confirmed
by the v’ profile at the midplane when three and five rings
are used (Fig. 20).

The rings will reduce the relative velocity between the
boundary and the interior flow in steady state, to the point

where a turbulent boundary is unlikely (see the discussion
above). This makes it more likely that the simulations
accurately predict the interior flow despite their relatively
low Reynolds number.

Fig. 18. Experimental setup with independently rotating rings in the

endcaps.
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Fig. 19. Simulated azimuthal velocity v’ for Re ¼ 1600 when the endcaps

are divided into multiple rings; (a) three rings; (b) four rings; and (c) five

rings.
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An optimization process incorporating this idea is under-
way to design a gallium experiment with maximum con-
trollability of the flow profile, yet with minimum compli-
cations to engineering and experimental operations.
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Appendix: Ekman Layer in a Differentially Rotating
Flow

Consider a steady axisymmetric flow that departs only
slightly from a centrifugally stable Couette profile,

� ¼ aþ
b

r2
; a; b > 0 and constant: ðA:1Þ

One may linearize the equations of motion (12)–(16) about
the basic state (A·1). Marking first-order quantities with the
prefix �, we have  ! � , !’ ! �!’, and v’ ! r�þ �v’.
Linearizing eq. (12) and discarding time derivatives,

2�@z�v’ þ ��!’ ¼ 0;

where � � ðr2 � r�2Þ. Incompressibility implies @z�vz ¼
�r�1@rðr�vrÞ, whence

@z�!’ ¼ @z @z�vr � @r�vz
� �

¼ ��vr;

so that

2�@2z �v’ ¼ ���2�vr: ðA:2Þ

By similar steps, eq. (13) yields

1

r

dJ

dr
�vr ¼ ��v’: ðA:3Þ

For the Couette profile (A·1), the coefficient of �vr in this
last equation is 2a, a constant. Eliminating �vr between
eqs. (A·2) and (A·3) yields

�2@2z þ �
2�3

� �
�v’ ¼ 0: ðA:4Þ

When viscosity can be neglected and �2 > 0, eqs. (A·2)–
(A·4) imply that small, low-frequency (� �) motions are
independent of z: this is the Proudman theorem.

We apply these equations to the boundary layer at one of
the endcaps, which rotates differentially (as might be
achieved by dividing it into many rings, see §5) with a
slightly different profile �capðrÞ from that of the fluid in the
interior, eq. (A·1). Vertical derivatives are much larger than
radial ones in the boundary layer, so eq. (A·4) implies that
the boundary-layer behavior is �v’ / expðkzÞ with

k4 ¼ �ð�=�Þ2; k ¼ �1� ið Þ
ffiffiffiffiffiffi
�

2�

r
: ðA:5Þ

Of these four roots, only the two for which �v’ decays with
distance from the boundary are admissible. To be definite,
let us consider the lower endcap, so that <ðkÞ < 0. The
Ekman layer thickness is

�E �
ffiffiffiffiffiffi
2�

�

r
; ðA:6Þ

and

�v’ ¼ r �cap ��
� �

e�z=�E cosðz=�EÞ;

�vr ¼
�

a
�cap ��
� �

e�z=�E sinðz=�EÞ ðA:7Þ

if we take z ¼ 0 at the endcap rather than the midline of the
cylinders. The radial mass flow is

_MME ¼ 2�	r

Z1

0

�vr dz ¼ �	r2 �cap ��
� � �

a
�E: ðA:8Þ

The net torque exerted on the fluid by both endcaps is

� ¼ 2

Zr2
r1

_MME

dJ

dr
dr ¼ 4�	

Zr2
r1

��E r
3ð�cap ��Þ dr;

and the amount of angular momentum that must be added to
the fluid to make its rotation profile agree with the endcaps is

L0 � L ¼ 2�	H

Zr2
r1

r3ð�cap ��Þ dr:

We may estimate the spin-up or spin-down time as

tE ¼
L0 � L

�
	

Hffiffiffiffiffiffiffiffi
8� ���

p : ðA:9Þ

Here ��� is a weighted average over radius; if we approximate
it by eq. (20) then eq. (A·9) predicts tE 	 9 s for water with
the values of r1, r2, �1, �2, and H in Figs. 1 and 15. The
agreement with the measured value (11:2� 0:9 s) is perhaps
better than we deserve in view of the crudeness of the
theoretical treatment. In particular, since �cap ¼ 0 in the
spindown experiment, our linear approximation is not
applicable.
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Fig. 20. Radial profile of v’ at the middle height when the dividing

number of the cap is 3 and 5. See also Fig. 19(b) and 19(c).
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