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Abstract

The Operational Power Reactor Regime (OPRR) (which is distinct from the Ignition phase) is in-
troduced as a major challenge for magnetic fusion. The necessity for a low recycling regime and a

wall-stabilized plasma for OPRR is emphasized.

For development of the OPRR, Spherical Tokamaks (ST) are uniquely positioned as high-ﬂ small
volume devices with good plasma confinement and stability. It is shown that Liwall ST devices with a
low-recyling plasma and wall stabilization have the opportunity for ignited operation in a self-sustained

magnetic configuration driven by the bootstrap current.

The use of the ST in developing the OPRR would provide a new vision for a Component Test Facility
(CTF) as a compact (30 m3) ignited ST (0.5 GW of fusion power) with high (5-8 MW/m2) neutron wall

load and maximum (up to 95 %) use of fusion neutrons for tritium breeding.

A compact Lithium Tokamak Experiment (LTX) is being proposed to address the basic plasma

physics and technology issues of the low recycling regime, controlled by a lithium wall surface.
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1 Basics of Opereational Power Reactor Regime.

|Important approximation for the fusion power

In the reactor, a-particles fusion power
covers all losses

Pa/{o p)*2 NRL (p.45)
P, > @a E, = §p‘fa /.\ g
B TE 2 . approximation
P, [GW] - power in a-particles, ~ Readdor rangh of T~
Ey, [GJ] - thermal plasma energy,
p [MPa] - averaged pressure, P
VvV [1000 m?®] - plasma volume.

Fusion power is proportional to the
plasma pressure

P, = 0.6(puop)*V, po = 0.4m,

Ppr = 5P, = 3(uop)*V.

25 T
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1.1 Four "betatau” formulas

Four important formulas come immediately from Ppr o p?

1.[B2-8 -5 > 4

\%4
TE

— ignition condition (B is in [T])
(p- 7T = 1.6 [MPa- g], 'n,-T-TE=5.1021>

__ DT power of the fusion reactor
(high T > 1.5 sec is bad for power production)

1

3 Vv needed external igniting power
2 — (high T =~ 3 secis necessary for 10-
5TE@i9n 15 sec of ignition phase)

together with

cost C of a reactor vs $-

4.1C [$B] + ... < 10.5——

Ppr$/EWh | value of electricity produced

4 0.04 (assuming 30 years of uninter-

rupted energy production)
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1.1 Four "betatau” formulas (cont.)

|Typica| examples of Fusion Power Reactor parameters:

With reasonable design parameters:

Ppr=4GW, B=5T, V =400— 500m3,

a Fusion Power Reactor should be ignited at high 7 and moderate 3

| TB@ign = 35€C, Pogr > 27 — 34 MW, |

and then must operate at an enhanced 3 and reduced 7

|76 = 1.1 —1.22sec, B =10.15—0.13 |

in order to fit the "betatau” requirements.

Having twice smaller volume than, e.g., ITER, it would be 10 times more
powerful in order to fit a cost

C =$(2—-3)-10°

consistent with $-value of electricity produced.
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1.2 OPRR and Ignition are two distinct plasma regimes.

|Ignition and operation phase have totally different plasma regimes.

a PC(v FbT [GVV]‘

18 %

V=500 m 3
B=5T

Operation
(stationary OPRR)

S

Ignition
(10-15 sec)

Fusion power, Py, Byt [GW]
S)

F12 % 14

Beta

0% New regimes are necessary.

[ "Betatau" of the reactor strategy: |

e Ignition/operation condition
|B2-ﬁ-TE[T2-sec]:4, |

e Total power

103m3}
b

Ppr[GW] =12,
T2 | sec

e Cost limitation

Ppr$/kWh
C [$B] < 1057078/
4 0.04

[Gw],

16 % e Ignition external power

Peyt = %PDT@ign-

Development of OPRR remains a
challenge for magnetic fusion.
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1.3 OPRR requires a low recycling plasma.

|Conventiona| plasma is controlled by wall fueling.

LTX simulations, no Li at walls

10 ne 1 Te 1 Ti 2e4 SN

magnetic axis
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PI}sma density ,% Particle source
L
@
c
[=)
(]
IS
0 rla 10 rla
s3 |C ional
&S onventiona
<& walls
2
4

ENERGY FLUX:

ERMO-CONDUCTION

convection

Pla

Particle outflux
all particle source + gas puff

impurities (Z > Z of Li)

| Peaked temperature: |

e ITG turbulence,

e thermo-conduction is a dom-
inant energy loss channel,

e peakedness of the current
density,

e g(0) — 1 - sawtooth oscilla-
tions,

e g(0) — 1 -low B and Troyon
beta limit,

e low bootstrap current,
e influx of impurities,

e poor utilization of plasma vol-
ume

| OPRR needs a different regime. |
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1.3 OPRR requires a low recycling plasma (cont.)

|Core fueling + Li absorbing wall offers enhanced edge temperature.

| Flatten temperature |

LTX simulations

10 ne 1

e no ITG turbulence,

e convection is a loss channel
for particles and energy,

Plasma density

Liwall
magnetic axis

Particle source

magnetic axis

e no sawtooth oscillations,

Liwall

e second stability regime (no
Troyon limit),

[ Liwalls add more: |
e wall stabilized plasma,
e high-3,
e high bootstrap current,

[N

0 rla 10 rla

e outflux of impurities,

| Liwalls are promising for OPRR. |
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1.3 OPRR requires a low recycling plasma (cont.)

|LiWaIIs require plasma to be aligned with the wall surface (no divertor) |

Electron and ion edge
temperatures are . Low electron edge
comparable temperature
_Liwall Sheath layer
Sheath layer :
Plasma Plasma Full reflection
as a neutral
|_|Good absorpsion
by the wall
Wall
Good for Liwalls Bad for Liwalls

Sheath potential near the walls is determined by the electron energy,
E ~ 3Te/pi-

| LTX targets comprehensive studies of plasma-LiWall physics. |
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1.3 OPRR requires a low recycling plasma (cont.)

[Liwalls offer (second stability core) + (wall stabilized) plasma |

o B %—Iinﬂits for L‘i Wall fix‘ed boungary plas‘ma

3
R/a=2.5/1B=5T e No sawtooth oscillations;
Y \TFTR circular cross—sectio ® N0 TI‘OyOI’l ||m|t,
M _ limi -
20! & B - limits for the second stability
SaVay4 regime

@ e fixed boundary plasma

2 en=1,23 + ballooning modes

%’ L (DCON,PEST-2,BALLON,ESC)

%;’ e current density with an edge

< pedestal

2 ) 9

a . T
O A J"_”“+(J°_”“)(1_cﬂ)
| LTX may potentially observe the effect of Liwalls on sawteeth |
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2 Ignited ST (IST) and the Component Test Facility (CTF).

|Spherica| Tokamaks are unigue in merging OPRR and Ignition Phase |

Fa» Br [GW] ! ! B
B=3T
. . | Betatau mini-reactor parameters: |
e Ignition & operation condition
g B?.3 .15 [T?-sec] = 4,
% IC;I;F;F;n § e Total power
T | Por ~ 0.5 [GW], |
5 ~40% e Igniting external power

| Poor ~ 25 [MW]. |
e Cost limitation
|C < 11$8B], |

| Ignited ST is a practical approach for development of OPRR |
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2.1 High-3 are achieved experimentally on ST.

|START, NSTX, MAST demonstrated OPRR relevant beta (35 %) |

Plasma operation in low |., wall-stabilized space

| 2001 Data | 2002 Data
8 T Design target S8 8¢ T ~
r ,\\'\\@ f Design target o'/ &% N
[ 7 < 7 E
Wall stabilized S8 r N
6 —> 6 F
[ E O o 0
F F o
5 5 o)

B 9O Ooez@oo °8
4 4 2
. [ 3 E Ooé%

r i ..
2 F 2t ©
E r o
<& <
1] 1 & < <>§<’i &
r > EFIT
o oL 7 &2 EFRL

00 02 04 06 0.8|1.0 12 14 16 00 02 04 06 0.8|1.0 1.2 14 16

® Normalized beta, B = 6.5, with B/l;=9.5; [, up to 35% over By o.wan
® Toroidal beta has reached 35% (B, = 2p,<p>/By?)

| By eliminating Te-peaking and IRE, LiWalls can make high-8 robust
1
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2.2 Ignited CTF rather than externally driven "burning" device.

|High-ﬂ Spherical Tokamaks are naturally suitable for ignition

Liwall Ignited ST (I,;=11 MA, B=3 T at R=1.25 m)

Z{m] W AL 2 Ziml Liwall ST CTE

7
,\

> Rml h 5 T 15 2 Rim h 5 PREY) 5 Rm

8 =0.41, Ppr = 388 MW S = 0.45, Ppr = 490 MW 3 = 0.48, Ppr = 606 MW
a4 1-profiles 3_p nPal Plasma presse

Z [m] Liwall ST C:
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2.2 Ignited CTF rather than externally driven "burning” device. (cont.)

|Tritium breeding, in fact, requires ignition for compact CTFs

4 _Z[m]
ST CTF Parameters
CenterPole Rm 05 05 0.5
CenterPole BT 75 75 75
Plasma R; m 05 05 05
2 Plasma R, m 20 20 20
Height m 30 32 34
Volume m? 26.1 27.8 29.6
Surface m? 53.4 55.9 585
| plasma MA 111 119 127
0 Plasma performance
Ppr MW 388 490 606
Entire CTF plasma T  Sec 0.75 0.69 0.64
FreuwtronMW/m2 58 7.0 8.3
2 LosSneutron %0 47 48 4.9
ITER
ITER cross-section Ppr MW 410
TE sec 3.7
4 FreutronMW/M2 0.5
0 2 4 6 8 R[m]

| IST can provide 95 % utilization of neutrons for tritium breeding |

PL
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2.3 IST and bootstrap current alignment

|IST appears to be consistent with the necessary bootstrap current

Current density distribution |

2 Z[m] Liwall ST CTF [8.5 MA, 460 MW IST]

7 Bootstrap current
o (ORBIT particle simulations)

S ions+electrons
ESCj //

electrons

0 5 1 15 2 R[m] 0 T T T T
0 8 1

2 4 6
normalized minor radius

| Only the central region may cause a problem |
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2.4 Pellet fueling of low recycling IST

|IST has the best magnetic configuration for pellet injection

2 _Z[m] Liwall ST CTF

Field gradient

dB] 5 T
Jdﬁl_z'5m

is higher than
in  "high-field"
side  conven-
tional tokamak
fueling.

In addition:

High speed of
pellets can be
utilized (3 km/s)

0 5 1 15 2 Rm
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3 Lithium tokamak experiment.

|LTX is a very first step for developing a wall controlled plasma

peaked 7 I pressure profile

W - o0
—
™~
. | L. —T
0 .2 4 .6 .8 R
Wall is designed for different I N N R -
J(r), p(r) and Iy flattened 7 | q- profile
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3.1 LTX plasma physics objectives

|Core fueled plasma is a key physics objective of LTX

It includes:
e studies of recycling, sheet potential and other plasma-wall physics

e identification of the basic scale lengths for the plasma edge (charge
exchange, ionization, ion larmor radius, banana width, etc).

e elimination of the wall dominance in the plasma fueling,

ne 1 e 1 i 24 SN 10 ne 1 e 1 i 1500 SN

Plasma density

Liwall
magnetic axis

. Particle source
Particle source

magpetic axis
magnetic axis

magnetic axis
Liwall

+~[ Wall surface

[

0 rla 10 rla 0 rla 10 rla

e development of a start-up scenario in presence of absorbing walls,
e development of a quasi-steady, pellet fueled plasma.

Flowing lithium is not a target of LTX.
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3.1 LTX plasma physics objectives (cont.)

|Scientific objectives of LTX are unique particle transport studies:

e Neoclassical physics can be illuminated in a low recycling LTX
(all trapped particles are predominantly at the plasma edge).

e elimination of the dominance of thermo-conduction in energy losses,
e test of Okhawa’s type dependence (1/n) in the particle transport,

15 ne 1 Te 1500 SN 10 ne 1 Te 1T 1500 SN

i) " 7
2 8 ES Plasma density EiE] )
e ) £ Particle source © Blo Particle source
2 Plasma density o = 2 1%
2 = = 5 g
=) T © 15 =
I 1S = £ S
= = S

- _Ti E

0 rla 10 rla 1 0 rla 10 rla 1

e low edge q (< 3) regimes in presence of a pumping wall

High-3 is not a present target of LTX.
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3.2 Theory backup

|Advanced tools are necessary for challenging physics of LTX plasma |

e ESC equilibrium and reconstruction code

e TRANSP, ASTRA transport simulation and analysis code
e DCON, BALLOON stability codes

e ORBIT particle orbit code

all already are linked together.

In addition collaboration with LLNL (UEDGE code) will provide the plasma
edge analysis.
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4 New vision of mission of CTF, based on an Ignited ST

|IST can potentially develop 3 major objectives of magnetic fusion, i.e. |

1. Operational Power Reactor Regime (in a minimal volume facility)
2. First Wall with reactor relevant wall loading

3. Tritium cycle

Being a mini-reactor, IST will leave to DEMO an extension to

e OPRR in a full size plasma configuration (conventional aspect ratio)
e FW with the full reactor functionality and a shielded neutron zone

e Full scale Tritium Cycle with the reactor scale power and rate.

At this moment,

| experimental tests and calibrations are desperately needed.|

LTX is proposed as a first device extending lithium technology research

|to systematic studies of low recycling plasma physics.|
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Appendix. Ignition power estimate.

|Ignition phase requires high 7 and low-8

The best scenario of ignition (e.g., low recycling regime with a flat T" and
a raising density)
Ey

dE,

— 2 = 6th+Pa_7 =~ emt+Pa@ign(w2_w),
dt TE@ignition
E,

Epl@ign

leads to third important formula

(4.1)

1 1 Vv
Pewt > ZPa@ign = %PDT@ign ~ 0.6

9

2
TE@ign

which gives a minimal estimate for the external heating power P,

(The subscript aign Specifies parameters at the ignition phase)
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