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The quasi-linear theory of collisionless test particle diffusion in stochastic magnetic fields is extended to
include the effects of finite gyroradius p and particle drifts (including magnetic trapping). A canonical
framework is used, in which both the criterion for onset of stochasticity and the diffusion tensor scale
with field-particle coupling coefficients g;. The g, contain all the information about the unperturbed orbit
of a given particle and the perturbation fields with which the particle interacts. The modification of
transport due to finite p and drifts is thus found by comparison of the g, including these effects to their
driftless, p—0 limit. It is found that runaway electron confinement is substantially improved over earlier,
driftless estimates, and that trapped particles in microturbulence ought not be stochastic. The

perturbations from proposed ripple injection schemes are large enough to induce stochasticity for certain

classes of particles.

I. INTRODUCTION

This paper deals with the effects of finite gyroradius,
particle drifts, and magnetic trapping on particle dif-
fusion due to magnetic perturbations of axisymmetric
toroidal configurations, Previous authors!™ have made
the approximation in which particles exactly follow sto-
chastic magnetic field lines. We find that inclusion of
realistic orbit characteristics can substantially reduce
the transport rate from that found by those previous
“line-following” theories.

We consider two types of magnetic perturbations:
those arising from microturbulence,! e.g., from drift or
tearing modes, and those arising from a coherent mag-
netic “ripple” field, due either to coil errors or intro-
duced intentionally as in ripple injection schemes.? We
also consider two types of particle orbits, trapped and
untrapped, and three general classes of particles, ther-
mal electrons, thermal ions, and runaway electrons
(species labels s=¢, i, and », respectively). In princi-
ple, the formalism is applicable to that class of parti-
cles in the intermediate region between trapped and
passing, where the rapid change in the bounce frequency
2, with bounce action J, is crucial to understanding
stochastic effects. However, similar problems have
been treated elsewhere,®” and the present work ex- -
cludes this regime.

The principal results are®

(a) The diffusion of passing particles in turbulence is
reduced by three effects. In order of decreasing im-
portance, these are

(i) an averaging over the mode profile due to guid-
ing~center drifts,

(ii) a shift due to drifts of the radius at which a par-
ticle is resonant with a given mode, and

(iii) an averaging over the mode profile due to finite
gyroradius.

(b) Trapped particles in turbulence are not expected
to be stochastic, for reasonable turbulence levels.

(c) In a ripple field, passing particles not too far from
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the separatrix separating trapped from passing can be
stochastic, for perturbation fields of strength exceeded
by proposed ripple injection schemes. (Trapped parti-
cles in ripple are not explicitly considered here, but
preliminary indication are that they are at least as
stochastic as the class of passing particles just men-
tioned.) This calculation is totally collisionless, and
thus studies a regime different from those considered
previously®™? for ripple-induced transport.

The problem is treated using a Hamiltonian frame-
work, which deals succinctly with the unperturbed mo-
tion, and isolates the resonances due to the pertubation
simply and explicitly. The quasi-linear diffusion tensor
D we use was developed in this framework by Kauf-
man,'® and the overlap criterion for onset of stochastic-
ity is that used by Chirikov.” Here, the general abstract
quantities in those developments are explicitly evalu-
ated for the various specific cases we study.

Section II describes the toroidal coordinate system we
shall use in the subsequent development. In Sec. III the
canonical formalism, in terms of which D and the over-
lap criterion are phrased, is described, and the form?*?
for D is given. Formal expressions for the overlap
criterion in this framework” are developed in Sec. IV.

Both D and the overlap criterion involve a set of field-
particle coupling coefficients g;, which succinctly ex-
press all the information about the trajectory of a given
particle and the perturbation fields with which it inter-
acts. The modifications of particle transport due to
realistic orbit characteristics (hence, the contribution
of the present work beyond that in Refs. 1 and 2) may be
seen by comparing the expression for g; including these
characteristics to the expression for g; in the zero gy-
roradius, line-following limit. Accordingly, in Sec. V
we evaluate g, and compare it to the line-following limit
assumed in previous theories. Further comparison is
made in Sec. VII.

In Sec. VI various quantities of the canonical formal-
ism, abstractly represented in Refs. 7 and 13, are ex~
plicitly evaluated, and their physical content discussed.
This readies the canonical machinery to make physical
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statements. This is done in Sec. VII, where the results
already noted are demonstrated and elaborated upon.

il. GEOMETRY

The formalism to be employed in this paper is, in
principle, applicable to any axisymmetric equilibrium
configuration, but we shall chiefly have in mind the
tokamak geometry illustrated in Fig. 1. We parame-
trize real space by the orthogonal curvilinear coordi-
nates ¢* =(a,8,¢), where ¢ is the toroidal angle, a is
the radial coordinate, constant on a given flux surface,
and 8 corresponds to the poloidal angle, generalized to
apply to noncircular poloidal cross sections, reducing
to the ugual poloidal angle in the particular case of
circular cross sections (we do not refer to this angle
coordinate by the usual 8, to avoid confusion of this
symbol with the canonical angle variables ©, to be intro-
duced in Sec. III). In terms of the covariant components
A?L =A°.9x/0¢" of the unperturbed vector potential A°,
and in a gauge in which AJ = 0, the poloidal and toroidal
components of the magnetic field B are given by

9A° 8A°
B,=-(g"¢"/* 532, Bo=(8%")/* 3 F, ()

where the g* = | Vg#|® are the diagonal elements of the
metric tensor. In particular, g®=R"2 (R is the major
radius), and, generalizing the definition of minor radius
» to noncircular cross sections, g#=#»"2. Fully specify-
ing a by taking A,=a, one has

a r
8,= —R"(-g%), or a=- j dr'RB,, (2)
and
7B, __3A;
1 RB,” "B ®

It is convenient to further define B=|B|, B=B/B,
b,=B,/B, b,=B,/B, and e =r/R.

Hil. DIFFUSION TENSOR, COUPLING COEFFICIENTS

In this section we present the form for the diffusion
tensor D developed in Ref. 13, and introduce the canoni-

~ Va,Vr
~0X

' Projection in l

Poloidal Plane

FIG. 1. Tlustration of the toroidal geometry considered in the
text, showing the coordinate system (a, 8, ¢) used there.
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cal quantities in terms of which the present work is ex-~
pressed. We do not rederive D here, but instead only
sketch the origin of its form, indicating its structural
similarity to more familiar forms. The expression for
D involves the square of field-particle coupling coeffi-
cients g,, which succinctly express all the information
about the interaction of a given particle with the per-
turbing spectrum, including the full nature of the parti-
cletrajectory (e.g., finite gyroradius and particle drifts).
The g, play a central role in determining both D and the
stochasticity criterion, and in seeing the modification of
previous results by the present work.

Following Ref. 13, we consider the diffusion of a par-
ticle in the space I=(u,J,, P,) of canonical momenta
which are invariants in the absence of the perturbing
fields. For the axisymmetric geometries we consider
here, these invariants are

(1) the gyroaction u=mv?/2Q, (where Q_=eB/mc),
i.e., u=(mc/e)i, where [ is the usual magnetic mo-
ment,

(2) the longitudinal invariant (“bounce action”) J,, and

(3) the canonical angular momentum P,. It is P,
which determines the flux surface a, (the “banana cen-
ter”) about which the particle moves, and it is thus
chiefly diffusion in P, which determines radial particle
transport.

Conjugate to these momenta are the coordinates
©=(6,,6,,%), with ©, the gyrophase, 6, the phase of the
bounce motion, and ¢ the bounce-averaged value of the
toroidal angle ¢. (Note that the concept of “bounce mo-
tion” applies to a particle which is passing, as well as
to one which is trapped. For passing particles the
bounce time 7, is given by the connection length gR
divided by the parallel velocity v,.) In the absence of
the perturbation, the Hamiltonian H; is a function only
of the invariants I, and the © thus evolve linearly in
time, 6=8()=8H,/01=(2,8,,2,). Here  is the
bounce-averaged toroidal drift (the “banana drift”).

The diffusion tensor in I space is given by?®
o@M=)_ Y |& T, a) [Alins(w, —1-Q). (4)
a 1

Here, a labels the components of the perturbing field,
with component a having frequency w,. Each of the com-
ponents of the vector 1=(,,1,,1,) may assume any in-
tegral value. From the 6 function in Eq. (4), we read off
the resonance condition

0=w,-1"Q. (5)

Finally, the field-particle coupling coefficients g, are
defined by

g(1,a)= - -j— (2m)3 fdeexp(_n-e)v(z)A‘[r(z)], (6)

where z=(0,1) is the phase~space position of a particle,
r(z) is its real-space position, given z, and v(z) is its
velocity. A’(x) is the vector potential describing both
the electric and magnetic parts of contribution a to the
perturbation (we work in the radiation gauge, ¢*=0).
One sees that gy is just the Fourier coefficient of the
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first-order perturbing Hamiltonian H,= =25 ¢c™j A%, i.e.,
@

Hl(z,t)=zzgl(1,a)exp[i(1'e-—wat)]. (7
Pl

One notes the structural similarity of D in Eq. (4) to
the more familiar expression for the quasi-linear dif-
fusion coefficient in linear momentum space for an un-
magnetized plasma, with purely electrostatic perturba-
tions

D (p)=(27) JdSk |e¢(k)]2kkﬂ6(wk—k‘v). (8)

The analog to g, here is e¢(k), again the Fourier coeffi-
cient of the perturbing Hamiltonian.

If interpreted literally, expression (4) is singular at
each of the wave-particle resonances, and zero else~
where. However, the nonvanishing Kolmogoroff entropy
in the stochastic state and the consequent nonlinear
mixing of orbits ensures that the resonances are
smoothed, so that for perturbation strength sufficiently
large so that the motion is stochastic, the 1 sum is to be
interpreted as a suitable integral, as discussed in Ref.
1. In the next section we consider the perturbation
strength required for the onset of stochasticity.

(V. STOCHASTICITY CRITERIA (FORMAL)

In order that expression (4) for the diffusion tensor be
valid, the perturbation strength must be large enough so
that the motion of a particle in I space is stochastic in
nature. If the perturbation is smaller than this, D will
equal zero instead of the value given by Eq. (4). In this
section, we develop general expressions for the re-
quired perturbation strength for the onset of stochastic-
ity, similar to those of an analysis by Chirikov,” em~-
ploying the widely used resonance overlap criterion.

One proceeds by using Hamilton’s equation for a sys-
tem with unperturbed Hamiltonian H,(I), and perturba-
tion of the form of Eq. (7). We assume that the particle
has momentum I=>~1,, where I, is a value of I satisfying
the resonance condition (5). We first consider the par-
ticle motion keeping only the (1,a) component of #, and
its complex conjugate, in which case the perturbed
problem is exactly soluble. One has

1= —ilg, exp[i(1-© - w,t)]+ c.c. (9)
and
l'é—wazl'ﬂ(l)—w,,=l'§'61, (10)

where 6I=I-1,, and we have expanded §(I) about 6I=0
and used (5) in obtaining (10). Defining ¢,=1'6 — w,t
(absorbing the a dependence into the 1 when used as a
subscript), we may combine Eqs. (9) and (10) to give

¥ =M7| 2, | sing, , (11)

where M{'=1-(8Q/8I)-1. This is just the equation for a
particle of mass M, moving in a one-dimensional sinu-
soidal potential of amplitude |g,[. Particles well
trapped in the sinusoidal wells oscillate at frequency wy,
given by

wy = | 2g,M7 12 (12)
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Using (9) and (12), one sees that the phase points z cor-
responding to such particles make a maximum excur-
sion Al in momentum space given by

AL =1]2g,/w,| = 1| 2g,M, |2, (13)
and the corresponding excursion AR, in & space is
_0Q 3 | ,
AQ =7 AL =77 1] 2g,M, |2, (14)
From Eqs. (12) and (14), one notes that
w,=1"4A89,. (15)

Now turning to consideration of motion under the in-
fluence of all the components (1,a), one expects that the
motion will become stochastic when the excursion al,
(or AQ,) due to one component is large enough to put the
phase point within a distance Al (or AQ,,) of the res-
onance point I,. of another component.

To write down explicit expressions for this verbally
described criterion, one must know the spacing between
the resonance points I, for the particular perturbation
being considered. As noted in the Introduction, we shall
congider two types of perturbations here, a turbulent
spectrum, consisting of many incoherent, radially local-
ized modes, and a ripple spectrum, consisting of a sin-
gle, totally coherent, time-independent perturbation.

In both cases, the physical mechanism of radial trans-
port comes from the change A, of the bounce frequen-
cy with the change 4#, in radial position being large
enough to allow the particle to come into resonance with
another component (1’,a’). For the turbulent spectrum
the spacing 0, between successive resonances is given
by the physical radial distance between the surfaces on
which the modes are localized, 6,~p,/m. (Here, p; is a
typical ion gyroradius and » is a typical poloidal mode
number). The criterion for stochasticity for the turbu-
lent spectrum may thus be written
1<(Ar,/5,)%. (16)

For the ripple spectrum, which is radially unlocalized
and has only a single component a, the radial resonance
spacing 8, is determined differently. The resonance
spacing §2,Al, in the [, direction of § space is given by
Al,=n,~10-20. This is wider than the spacing Q,4l,
=&, for the I, direction. Thus, a particle moves along
a chain of successive regonances 0=1"*Q(r,,), where
1'=1,1+8,1x 28, ..., with 8 the unit vector in the 1, or
Vg direction, Using this condition for two adjacent res-
onances, viz., 1 Q(r)) =0, (1+8) - Q(r,+ 5,)= 0, and writ-
ing Q(r;+8.)=Q(r )+ AQ,, one obtains the stochasticity
criterion ]1~A91j> |$%| . or squaring both sides for con-
venience and using Eq. (15),

1<({w,/Q,)?2. (17)

Equivalently, given an expression for §(r), one can ex-
pand §(r,+ 6,) about , and obtain criterion (17) in a
form involving 5_ explicitly. The expression so obtained
has the same form as Eq. (16),

1<{ar,/5,7. (18)
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V. FIELD-PARTICLE COUPLING COEFFICIENTS

In the past two sections, we have seen that the cou-
pling coefficients g, play a central role in both the sto-
chasticity criteria (through w, or Ay, cAP ) and in the
form for D. We now adopt forms for the phase func-
tions r(z) and v(z) which include finite gyroradius and
particle drifts, and use them in expression (6) to ob-
tain a more explicit expression for the g,. Comparison
of this expression to its zero-gyroradius, driftless
limit will show the modifications by these effects of
previous results,'r? in situations to which those results
apply (viz., turbulent spectrum, passing particles).

A. Particle trajectories

We make the usual separation of r and v into the con-
tributions from guiding-center motion and gyromotion

r=R+p, v=R+g. (19)
The gyromotion is described by

p(©,)=p(dsin6,+ Bx & cosO,),

A (20)
60, =placos ©,-Bx &sino,),
and the guiding-center position R is modeled by
R(6,, ®)=&(a,+ a, cos0,)+ E(boeb+ b, sin ©,)
+$(®+ ¢, 5in0,). (21)

(From this, R too may be written down directly, if de-
sired.) The projection of R(©,) onto the poloidal plane
is illustrated in Fig. 2. Here, a, is the flux surface
about which a particle drifts in the course of its bounce
motion, and «, is the “banana width,” the size of the
excursion from o, which the particle makes, in units
of a.

The secular motion of the particle is described by
the terms 5,9, and &, For a trapped particle [Fig.
2(a)], b,=0, correctly modeling the fact that the only
secular drift for such particles is the toroidal banana
drift Q,= &, For passing particles [Fig. 2(b)], b,=1,
so that a particle makes one complete circuit poloidally
each bounce period.

The terms in b, and ¢, model both drifts normal to
B, and the modulation of v, due to the mirroring effect
of the iB well. The separation of the parallel from the
perpendicular effects may be explicitly accomplished,
decomposing the vector R, = f7b, + &R ¢,, into its par-
allel and perpepdicular components. Defining R,
=B ‘R,, R,,=(Bx &) -R,, one obtains

Ry =byrb,+b,R®,, Ry ,=byb -b,R},. (22)

Thus, in cases where uB effects dominate those of per-
pendicular drifts, setting R,, =0 yields ¢,/b,=7b,/Rb,
= q,

For particles near the transition from trapped to
passing, the higher harmonics (i.e., terms like sin
m®,, cosm®,) of the bounce motion becomes appre-
ciable, and the model (21) for R may be inadequate.
We shall henceforth exclude particles in this transi-
tional, “separatrix” region from consideration. Relat-
ed problems dealing with this regime have been treated
by Smith and Kaufman,® ¢ and by Chirikov.”
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Bp=7/2

Trajectory

8p=-m/2

Trajectory
‘ a-ap
_eb: B =0

FIG. 2. The poloidal projection of the unperturbed guiding-
center trajectories modeled by Eq. (21), for (a) trapped and
(b) passing particles. .

B. Evaluation of g

We now evaluate g,. For the turbulent spectrum, A
~A,B, so we neglect the contribution from the term
p-A. For the ripple spectrum, because & p<p/a<<1
(a is the minor radius at the limiter),

fdegp' A=A f d0,6=0,

so again the g -A contribution is negligible. Now writ-
ing A(R+p) ~A(R) exp (ik - p), where k is the local wave
vector, we perform the integral over the gyrophase 6,:

g, -e(2m) fde,, Idcbﬁ-A(R) fdegexp(ik-p—il-e)

=~e(27) fdebexp(-ilbeb) fd‘bexp(-ilo@)

xR -A(R)J,‘(klp) exp(-il,0,). (23)
Here and henceforth, we set m =c=1 for notational
simplicity, The phase ©,, defined by k-p=£k,p sin(6,
-©,), is unimportant, since it is |g, | which appears
in quantities of interest to us here. We therefore drop
it from the explicit notation. In obtaining Eq. (23), we
have used the familiar Bessel identity

7,(y) = @m §de exp (— i16) exp (iy sin 9). (24)

Due to the axisymmetry, the only quantities in (23)
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dependent upon ® are A(R) and exp(-il,®). The inte-
gral over ® is thus simply the Fourier transform of
A(R). Writing

AR)=Ala,b,4)= Y Ala,b,1,)exp(il ,3)
T

(where b is the 8 coordinate of the guiding R) and ¢
=&+ 5¢(0,) [where from Eq. (21), 86(©,)= ¢,sin6,],
one has

g,= - e(2m™ fdebexp(—ilbeb)ﬁ -A(a,b,1,)

x exp(iloﬁqb)J,‘(klp). (25)

Because we are considering perturbations which are
either low or zero frequency (w << ;), in order that
condition (5) be satisfied and also that g, be apprecia-
ble, we henceforth always take

1,=0.

4

(26)

Since D ~1l, I,=0 implies that {i is still a good invari-
ant under the perturbation.

For the ripple problem, %k,0<1 for all species s -
=e, v, 1, so the factor J, =J, in Eq. (25) is essentially
equal to one. For the turbulent spectrum, for both s
=y and 7, one may have k,p~1. Thus, one sees that
finite particle gyroradius may appreciably reduce g,,
and hence D ~ |g, |?>. This mechanism was alluded to in
Ref. 2.

We now turn to the integral over 6, appearing in (25).
We neglect the dependence of k,p on ©,, taking the fac-
tor J,(k,p) outside the integral. If we also neglect the
mode localization width w, in comparison with the par-
ticle banana width », = @,(37/30), we have A(a = a,+ da)
=~ A(a,) exp (ik ,6cr). Then, using our model expression
(21) for R, we obtain

1=~ eJ(,(klp) Z {(beoAB"' QGAO)J’D"’O"'(J)I)

+ %Qb(lhAe*’ ¢1Ad:)[Jlb-bom-l(yl)+Jlb-bom+1(y1)]}' (27

Here, we denote by A, the component Aj(a,,m,l,) of the
perturbation, where

Aglam,1,)=(2n)" apexn(-imPA(e, 6,1,)

=(2n)* § dp § do exp - itmB+1,0) Ui(e, B, 0),

and similarly for 4,. For the individual modes A%(r) in
the turbulent spectrum, A%(r) ~A%(a)exp [i(m 8- nd)],
and the sum over m in (27) consists of a single term.
Similarly, the ripple field from field-coil errors may
also be approximated by a single term, with m =0.
Ripple fields for particle injection schemes, which are
strongest at 8= - 7/2 and weakest at 8= — 7/2, may be
approximated by three terms, m=0,+ 1.

The argument y, of the Bessel functions is given by
yislmb,+1,6,F+(k, a,); (28)

we have suppressed the notation of an accompanying
phase factor as was done for exp(-il,©,).
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C. Discussion and estimates

The first line in Eq. (27) comes from the nonoscitla-
tory portion of the velocity R,= Bb,Q,+ $%,, and the
second line from the oscillatory portion. We recover
the result of the zero-gyroradius, driftless theories
by considering passing particles (b,=1) with the drifts
“turned off” (b, = ¢, =y, =0), setting &,p to zero, and
taking A%(r) of the exp[i(m 8- n¢)] form of the turbulent
spectrum. Then, using the fact that J,(y=0)=5(1) (5
here is the Kronecker delta), Eq. (27) reduces to

g1=—ed(l,+n)d(l, - m)R, - A®. (29)

Including the effects of drifts, one has y, #0, in gen-
eral, so that the Bessel functions J,(y,) in Eq. (27),
which in the driftless limit acted like a § function, will,
for y, #0, introduce a spread Al ~2y, in the effective
spectrum which a particle sees. Using the large-and-
small-argument limits for J,(y),

J,(9) =(¥/2)1/11 (v<),
J () =(@2/my) 2 cos (v - 1n/2 — 7/4) (y>1),

in Fig. 3 we illustrate this spreading, sketching J,(y)
versus its index [ for fixed y. [Equation (30) and Fig. 3
are strictly valid only when [ is an integer, which is
always the case here. ]

(30)

We now consider the size of y,, for both the turbulent
and ripple spectra, We shall see shortly that for the
turbulence problem, y, is a number on the order of or
smaller than 2 or 3, so that the spreading of the spec-
trum through the terms J,(y,) in g, is small and not a
dominant effect of particle drifts. The small value of
¥, is due to the small value of k,, and the fact that guid-
ing-center motion is predominantly parallel to B, For
the ripple case, however k, ~n/R is appreciable, so
one finds y, > 1 here. Because the ripple spectrum con-
sists of a small number of components, with resonance
points I; widely separated in I space, the spectrum-
spreading effect of y, > 1 is crucial to understanding
how the coherent ripple field can induce stochasticity.
(An analogous problem, in which a purely coherent
field induces particle motion, is studied in Refs. 5 and
8.)

Denoting by 8», the amplitude of modulation of the

AR
T

|
y
| bi~2y ]

~1/4(yr2)¢

FIG, 3. Sketch of J;(v) versus I(y fixed), using the limiting
forms in Eq. (30), showing the spreading Al~ 2y due to inclu-
sion of drift effects from the driftless (y=0) limit. The
sketch, and expressions (30) from which it is drawn, are valid
only for integral I, as is always the case in the text.
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parallel velocity by the B well (hence, 6,7, ~R,,
~R¢,) and by v, the perpendicular drift velocity, from
the origin of y, in the integral of Eq. (25), one sees that
we may approximate the size (and physical interpreta-
tion) of y, by the formula

¥y~ (By 60, /Q)+ (R, / Q) =9y, + 9,

One has that v, ~v(p/R), where v= |v| is the magni-
tude of the particle velocity. For a trapped or barely
passing particle, 8v,~ev®/v, ~¢v. The size of y,,,

(31)

or ¢, ~gb,, is greatest for the former class of parti-
cles, for which
~6v,7,/R ~/% (32)
and thus
Yu =kyRby =</ ?qRhy, 91, ~qok, . (33)

Putting in the values &, ~Lg ~(qR)™, k, ~p7 for the
turbulent spectrum and %, ~ n/R ko~ bpn/R for the rip-
ple, one finds the estimates

Y S el? y Y gfI(P/pi) (34)
for turbulence, and
Yu S El/zqn’ N z‘((I)/R)n <Y (35)

for ripple.

D. Effect of finite (r; /w,)

For the turbulent spectrum and for s=v,{, one may
have the particle banana width », comparable to the
width w, of the mode a with which the particle is reso-
nant. There are two effects to be considered here.

First, the approximation A(a) =~ A(a,)exp(ik,,0a) made
in obtaining Eq. (27) from (25) is not strictly valid, and
the size of g, may accordingly be modified. One can
obtain an analytic expressmn for this modiflcation by
writing A(e) = A(a)exp(ik,b,), where A is a slowly vary-
ing mode amplitude, and expanding A about o = a, A(q)
~A(ab)+ sa Al (a,)+ +++. Then, noting that

(6a) exp(ik, 0a)= ( ;T) exp ik 5,),
one may take the derivatives (3/0%,) outside the inte-
gral in Eq. (25), yielding these derivatives acting on
the same form as Eq. (27), with A, , there replaced by
derivatives of A, , to the appropriate order.

While such an approach may be useful for the subse-
quent numerical analysis, it does not give much phys-
ical insight., We therefore make the rough approxima-
tion that the effect of this excursion in ¢ is to average
the mode amplitude over the range «, about the point
a,. The form of (27) is then unchanged, if one inter-
prets A, , there to include this averaging effect.

The second effect of finite (frl/wa) is to shift the value
a, which a particle’s o, must equal in order to make it
resonant with a given mode 4, localized at «,. For
simplicity, and because it is the most important in-
stance of this effect, we consider runaway electrons,
s=v. Then, w,~w, may be neglected in the resonance
condition, which appears as
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0=1,2,+1,9, ~kv,+kv,. (36)
LR P a4

With v, set to zero, (36) states k,(a,)=0, i.e., a par-
ticle is resonant with a wave at that o, where the wave
has %#,=0. For the turbulent spectrum, «,=¢«,, the
position of maximum amplitude of the mode. For fi.
nite v,, however, one has |k,/k,|= |v,/v,|. Usingk,
=k (6v/Lg), where dr=7-7,=(37/3a)(a - a,), we are
led to the estimate

(37)

Because ¢gp, is comparable to the mode width w, ~p;
for s=v, a runaway electron will interact resonantly
with a mode at a position where the mode amplitude is
appreciably reduced from its value at r=v.

VI. HAMILTONIAN Hq (1) AND AUXILIARY
QUANTITIES

v, = v, —¥,~qp,-

A. Hyl)

The formalism of the preceding sections calls for
the unperturbed Hamiltonian H, in terms of the invari-
ants I, both in evaluating $=28H,/9I for the resonance
condition {(5), and for 8R/81, used in determining the
stochasticity threshold. In this section we obtain ap-
proximate expressions for H,(I), for the two types of
particle trajectories modeled by Eq. (21).

We begin from the guiding-center Hamiltonian K,
valid for tokamak geometries, for which b,> b, (Ref.
13):

Ko(u; b, Py; Py)=uQ +3R2(P, —ea,)?. (38)

Here, @ and R are evaluated at the guiding-center posi-
tion of the particle (o,,b) (the toroidal angle ¢ does not
enter), and ¢, is determined by the guiding-center condi-
tion

P, ~eASa,,b) (39)

From Hamilton’s equation ¢ =R*3(P, -~ e,), one sees
that in the course of a bounce period, «, executes a sin-
gle oscillation, as does P,. For trapped particles, the
oscillation is about the point where ¢ =0, hence where
ea, =P . For this reason, it is appropriate to define
a, by

ea,=P (40)

o>
{For passing particles, we may also adopt this form for
@,, adequate for purposes of estimation.)

We want to transform from the guiding-center varia-
bles (b, P,) in terms of which K, is expressed, to action-
angle variables (6,,J,) used in H,, where

J,= (2n)'1§ b P,. @1
For passing particles not in the immediate vicinity of

the separatrix between passing and trapped, P, is rough-
ly constant over a bounce period, so from (41),

J, =P, =eA%(a,), ©,~b. (42)

[The dependence of Ag on b, which is weak in any case,
has been dropped in (42), since we have averaged over
b in obtaining J,,.]
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We now define A, as the functional inverse of A, i.e.,

AJAYa,)] =a,. Thus,
8A 9A -1
SE_|Z28 =_g
8A5—<8a3> 1 43)

Using (42) in (38), therefore, H, for passing particles is
approximately given by

Hy~pQ+3RAP, —eA U, /e))>. (44)

(Here, © and R are understood as bounce-averaged
quantities.)

From (40) and {(42), and noting that @, ~a,, we see
that P, and J, play essentially the same role for passing
particles, that of a radial coordinate, with

9

b _ a® a1 ®
=(Qrb,) 5y =4 °p, *

57, (45)

9 .
a_P: = —(QRbP) _8‘;.
For trapped particles, it is precisely the variation of
P, over a bounce period (finite banana width) which gives
anonzero value forJ, in (41). Hence, J, = (2n)* $4b 6 P,(b),
where from Eq. (39), 5P,(b)~ (8A}/8a)5(ec,). We solve

(38) for d(ea,)=ela, - @,),

blea,) =R[2(K, - pu)]*/2,

and so evaluate J,

(46)

Jy= @) § dbgR(20C, - uD)]=(n)* ¢ dlv,. @7

Here, dl =—qR db is a differential length element along
the field, so the last form in (47) is the usual definition
of the longitudinal invariant.

Expanding 2(b) about its b =0 value, one evaluates
(47) explicitly and solves for H,=K,, obtaining

Hy= uQ + (@R)™J (e uf)t/2 (48)

for well-trapped particles. In Fig. 4 we sketch H, - u
versus J,, using the forms (44) and (48) in their do-
mains of validity, and interpolating between them to give
the proper plateau behavior (R, =9H,/8J, ~0) in the sep-
aratrix region,

Trapped Separatrix Passing
i Regime | Regime ! Regime
' [ |
= | I
| |
1 |
1 1
~p 1 ' 2
b : : ~(Jp+q Pg)
[ {
| |
| l
Jb

FIG. 4, Sketch of the parallel kinetic energy Hy— uQ verses
bounce action J;, using forms (44) and (48) for H, for passing
and trapped particles, respectively, and interpolating in the
inter mediate separatrix regime in conformity with require-
ment that Q,—0 in this region.
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B. Auxiliary quantities, physical interpretation

Now, we compute the frequencies Q and their deriva-
tives 8Q/91, using Eqs. (44) and (48) for H,(I), and
check that these expressions give physically reasonable
results. For passing particles, Eq. (44) yields

oH -
Qa =3P:=R Z(Po _eAg)’
(49)
8H e
Qb ='gj§= R 2(Po —eAA,).

Noting from (44) that v?=R"*(P, - ¢A,)?, we find from

(49) that
Q2= (v,/qR)?, (50)

i.e., the bounce time for passing particles is just the
time required to travel a connection length gR.

From (49) one also sees that
Qo/ﬂb=q ’

showing that passing particles basically follow field
lines.

(51)

Similarly, for trapped particles, one has

g~ pd (2l q_@rr'enar’z,  62)
o= Fop, “T\2aRp,) T SRR

where k, =01nQ/3r ~ |VB|/B. For the second form giv-
en for €,, we have used the second equation of Egs. (45)
and that u =1/2v7. We see that Q, is just -b,v5/R,
where vy =kpviQ is the usual VB drift. The “amplifica-
tion” of this drift by the factor -b;' comes from the

fact that the predominantly poloidal VB drift puts the
particle on new field lines, which arrive after one pol-
oidal transit considerably displaced in toroidal angle.'?

The factor (€ uR)!/2 in €, in (52) is equal to the maxi-
mum v, which the particle attains bouncing in the {iB
well. Hence, the interpretation of €, is about the same
as for passing particles. From these physical inter-
pretations, we obtain the estimate

Q,/2,~ (grgp/b,e*’ 2)~ €/ 2(p/r)g*. (53)

For s =i this ratio may be on the order of 1/5.
We now calculate 8Q/8I. For passing particles,

an 193 an

o g2 % _ 9 ap-z

5P, "R 37, "p, 1 F (54)
and

19/ Q.R

9%y _y-2p-2 _ [ 20lt

ad, ¢ <er ,nL,> ’ (55)

where L,=qR/(8lng/8lnr) = -€(3g™*/87)"! is the shear
scale length. We have used the first of Eqs. (45) in ob-
taining the last term in Eq. (55). This term, expres-
sing the change in 2, with » due to shear, is critical in
determining the overlap criterion.

The components of 8Q/81 for trapped particles may be
similarly computed using Eqs. (52). However, we shall
be able to find the desired results using quantities al-
ready computed, so we do not display these additional
formulae here.
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Finally, we use 8§/9I to compute M;'=1. 8Q/8I.1 for
passing particles. Neglecting w, in Eq. (5), one has

lb:-lo(ﬂo/ﬂb)zn(ﬂm/gb)qu—l/z(p/pi) :

Neglect of w, is not justified only for trapped ions in
turbulence for which loﬂm/wa~ €, so that w ~[,Q, is an
appropriate approximation to the resonance condition.
In this case,

(56)

67

These expressions for [, are understood to be approxi-
mations to its nearest resonant value, which must be
integral.

Using relations (56) and (51) with Eqs. (54) and (55),
one finds a cancellation of all contributions to M;! for
passing particles except the second term in (55)

Mit = —I2(Q,R /v?b QL) =1,1, (R, /b,97L,) .

I~ w,/Q>w /Q~qe3 %(p/p,).

(58)

The results needed to study the central problem of this
paper are now in hand. We utilize them in the following
section.

VIl. RESULTS OF THE ANALYSIS

Now, we are ready to obtain explicit expressions for
the formal criteria of Sec. IV for the onset of stochas-~
ticity, as well as to see the modifications due to drifts
and finite gyroradius on the diffusion tensor.

We first consider the case studied in Refs. 1 and 2,
passing particles in a turbulent spectrum. Then, the
factor €,A, dominates g, in (27). Using this and Eg.
(58) in Eq. (13) to compute Ar,=(8v/3ea)AP,,, one finds
that criterion (16) becomes, after some algebra,

1< |B(Ly/kg02) |~ | B (ML /kp?)| . (59)

This expression is formally the same as that in Ref. 3,
but with the ratio B, ,=B,, (r,)/B [where B, (r,) is the
radial field of the component a with which the particle
is resonant, evaluated at the radius », at which B,, is
greatest] there replaced by

B, EB1,oJo(klp)sz-bom (»,)B,, ,)/B,, )]

Here, 7, is the radius at which a particle is resonant
with mode a, and B,,{r,) is to be regarded as an average
of the mode amplitude over a “banana width” »; ~gp
about 7,. The ratio I'=B, (r,)/B, (r,) then accounts for
both effects described in Sec. VD. Assuming a Gaussian
form for B, (r), one has T'=exp|-(r,/w ). Since

r,~w, for s=7, i, T is strongly dependent upon the value

b /w,).

A second effect of drifts is contained in the factor
J,b_,,om(yl). For passing particles, b,=1. We determine
1, from Eq. (56), 1,=-1,9,/Q,=nq (). For the turbulent
spectrum, one also has » =nqlr,), s0 J 5, (v,) =Jo(y,).
Using (34), we see that for s =i,7, y,~2 or 3, hence J,
may be considerably reduced from its driftless, y, =0
value. For small (r,/w,), the separation of A(r) into an
oscillatory (~exp(ik@)da) and an amplitude portion is
not uniquely determined, so some exchange of informa-
tion is possible between the factors I and J,(y,); how-
ever, they are not the same. In particular, from (28)
one sees that even for £,=0 and a constant mode ampli-

(60)
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tude, vy, would still be of the same order of magnitude,
due to drifts in the B X & direction.

We estimate the size of B,/B, , for the present case
(turbulence, passing particles). If one takes k,p~1,
v,~2, and 7, /w,~1, then Jy(k,p)~2/3, Jo(y,)~1/3, and
T'~1/3, so that B,/B, ,~1/13. The stochasticity criter-
ion (62) is then about 13 times more difficult to satisfy
than the driftless, zero gyroradius result, from roughly
B,,,>2x107 to B, ,>2.5x10°°. One notes, however,
that this estimate is highly sensitive to the parameters
k.p, v,, and »,/w,, which are not well known. For ex-
ample, if instead one takes k,p~1/2, ¥,~1, and
r,/w,~1/2, one has J,(k,p)~9/10, J(y,)~2/3, and
T'~4/5, hence BI/BI,O~ 1/2.

The diffusion tensor D is correspondingly reduced by
these effects. For comparison to previous results, we
first remove these effects by mathematically “turning
off” the drifts and setting k,p to zero; then, %, is given
by Eq. (29). Radial transport comes from the compo-
nent D,,=D,,,,(87/9,,)" of Din Eq. (4). In this driftless
limit, one recovers the result of Refs. 1 and 2,

Dgr=z (Rﬂo)zBio'”é(me_”‘Qo)' 61)
myn

Restoring the new effects, D,, is given by Eq. (61), but
with B, , replaced by B,. Radial diffusion is therefore
reduced from the expectations of previous theories by a
factor D,,/D?, ~ (B,/B, ;)% For runaway electrons, the
estimates just made show that this factor may range
from 1/4 to as much as two orders of magnitude. In
Ref. 2 it is noted that the simple line-following estimate
D?, predicts that the confinement time for runaway
electrons should be reduced from that for thermal
electrons by a factor v,/c ~1/15, whereas experimental-
ly the confinement times for these two particle classes
seem to be comparable. One sees that the reduction of
D,, from D, by (B,/B, ,)* provides a possible explana-
tion for this discrepancy (although alternative explana-
tions may also exist).

The analysis is similar for the other cases covered
by the theory. For ripple, we may take A, =0. For
passing particles in the ripple field, we evaluate criter-
ion (17) or (18), finding

1<|B,(g°Rl,/€Ly)]| . (62)

Now J,(k,p)=1=T, and in Jy,-(y,), one has l,~gn as
before. Now however, m <<gn~30, and from (28) and
(35), v, |l,¢,] =~ |ngb,| < €/%q. Thus,

B,/B, ,=J, (v, Sqn) < (gn)7~1/3. Using this in (62),
one obtains the estimate

B, ,>1/50, (63)

which current ripple injection schemes satisfy. Equation
(63) however, assumes, b, ~1. For more strongly pas-
sing particles, whose trajectories are less affected by
the B well, one should use the small-argument value
in Eq. (30) for J,,(y,), making criterion Eq. (63) more
difficult to satisfy by a factor J,(gn)/J,, (y,) =~ (gn/y )"
=~ (b, )",

We now consider the case of trapped particles. The
dominant contribution to g, (27) is now from the factor
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¢,A, for turbulence, and b,A, for ripple. We thus re-
define B, slightly, letting J in (60) be replaced by

Ip=bom
1 1
2 (Jlb'bom-l +Jlb-b0m¢1) =2 (Jlb-l +Jlb4»1) -

For s=e, Eq. {56) implies I,~0. For this resonance,
however, B, «<J,(y,)+J_,(y,)=0. This zero coupling
arises because an electron stays so close to its original
field line in a bounce period that on the return half of the
bounce motion it follows almost the same path along
which it came.

Since no stochasticity arises from the nearest reson-
ance, one may look at the next nearest ones, [, =%1.
For these to be effective, the electron must make an ex-
cursion 6, to the next resonant surface in less than half
a bounce period, in order that the particle not retrace
its steps, as just described. For such perturbation
strengths, the electron effectively “does not know” if it
is trapped or passing, and so one may use expressions
derived for passing particles. In a bounce period, an
electron makes an excursion & which is a fraction
w,/Q, of its full excursion Ar,. For stochasticity, one
must have 67 >§,, i.e.,

1< (w,/2)(Ar,/8,).

From expressions (12), (13), and (58), one may compute
the ratio of the two factors in (64), finding

(Ar, /88, /w,) ~€q™ 'L /5, ~ (r/p)*~10%, Therefore, con-
dition (66) is a factor of 10* more difficult to satisfy
than (16) or (59), requiring B, ,>2.5X107%, a regime
not considered here. We conclude that trapped elec-
trons should not be stochastic.

(64)

Since there are no trapped runaway electrons, the
only remaining species in the ions. For these, from
(57) and (34), I, ~w /R, ~qe3/2~12 and y, ~q. Thus,
the small-argument expansion of J, ., is appropriate,
reducing g, by a factor <(y,/1,)'» ~ (€*/2)%~ (3)'%. This
factor in g, overwhelms the others in criterion (16), and
so one expects no stochasticity from trapped ions in
turbulence, for any reasonable size of B, ;. The physi-
cal origin here is that because w, is large compared with
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2, for s =%, an ion cannot resonate with the wave, which
moves basically across field lines.

The final case to be discussed would be trapped parti-
cles in a ripple field. However, since the present theo-
ry assumes integration along unperturbed trajectories
is valid, it may not apply well to trapped particles,
which will be strongly affected by the ripple fields as
they approach the turning points of their unperturbed
orbits. The proper study of this case, removing this
limitation of the formalism, is thus left to future work.
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