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Outline

 MHD equations and numerical method
— Unsplit upwinding method
div(B) issues
— Projection method
Semi-implicit MHD code — Progress.
* Results
— Plane wave propagation

— Rotor problem
— Magnetic reconnection

Conclusion and future work
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E I eCtrO m a.g n etl C CO u p I I n g (courtesy T. Gombosi, Univ. of Michigan)

* Weakly coupled formulation

— Hydrodynamic quantities in conservative form,
electrodynamic terms in source term

— Hydrodynamic conservation & jump conditions

— One characteristic wave speed (ion-acoustic)
@ r 6l @ ru OuanC') '”BN(B)]

- ru +|N><9 ruu+ip Iy %% BI Tt
gru+11p5 i é[ru+ p]u;ab & U o J

N° B

51t 2

« Tightly coupled formulation
— Fully conservative form
— MHD conservation and jump conditions
— Three characteristic wave speeds (slow, Alfvén, fast)
— One degenerate eigenvalue/eigenvector
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Single-fluid resistive MHD Equations

e Equations in conservation form
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Numerical Method

MHD Equations written in symmetrizable near-conservative form
(Godunov, Numerical Methods for Mechanics of Continuum Media, 1, 1972, Powell et al.,
J. Comput. Phys., vol 154, 1999).

— Deviation from total conservative form is of tne order of N>B truncation errors
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The symmetrizable MHD equations lead to the 8-wave method.
— The fluid velocity advects both the entropy and div(B)

Finite volume approach. Hyperbolic fluxes determined using the unsplit
upwinding method (colella, J. Comput. Phys., Vol 87, 1990)
— Predictor-corrector.
— Fluxes obtained by solving Riemann problem

— Good phase error properties due to corner
coupling terms
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The r¢ B=0 Problem

«  Conservation of N>B =0:
— Analytically: if N>B =0 at t=0 than it remains zero at all times
— Numerically: In upwinding schemes the curl and div operators do not commute

«  Purposes to control N>B numerically:

— Toimprove accuracy
— To improve robustness
— To avoid unphysical effects (Parallel Lorentz force)

¢ 8-wave formulation: r¢ B = O(ha) (Powell et al, JCP 1999; Brackbill and Barnes, JCP 1980)

e Constrained Transport (Balsara & Spicer JCP 1999, Dai & Woodward JCP 1998, Evans & Hawley
Astro. J. 1988)

e Constrained Transport/Central Difference (tothacp 2000)
* Projection Method

* Vector Potential (Claim: CT/CD schemes can be cast as an “underlying”
vector potential. Evans and Hawley, Astro. J. 1988)

* Require ad-hoc corrections to total energy

* May lead to numerical instability (e.g. negative pressure — ad-hoc fix
based on switching between total energy and entropy formulation by

- Balsara)
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r¢ B=0 by Projection

- Compute the estimates to the fluxes F™172_, ;. using the unsplit formulation

» Use face-centered values of B to compute r¢ B.
Solve the Poisson equation r?f =r ¢ B

« Correct B at faces: B=B-rf
- Correct the fluxes F™12,,, . with projected values of B
« Update conservative variables using the fluxes
— The non-conservative source term S(U) a r¢ B has been algebraically removed
« On uniform Cartesian grids, projection provides the smallest correction to

remove the divergence of B. (Toth, JCP 2000)

* Does the nature of the equations change?
— Hyperbolicity implies finite signal speed
— Do corrections to B via r?f =r¢ B violate hyperbolicity?

« Conservation implies that single isolated monopoles cannot occur. Numerical
evidence suggests these occur in pairs which are spatially close.

— Corrections to B behave as a 1/r?in 2D and 1/r3in 3D
~’°Prqjgectjon does not alter the order of accuracy of the upwinding sche
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Adaptive Mesh Refinement with Chombo

« Chombo is a collection of C++ libraries for implementing block-
structured adaptive mesh refinement (AMR) finite difference
calculations (http://www.seesar.|lbl.gov/ANAG/chombo)

— (Chombo is an AMR developer’s toolkit)
« Mixed language model
— C++ for higher-level data structures
— FORTRAN for regular single grid calculations

— C++ abstractions map to high-level mathematical description of AMR
algorithm components

Reusable components. Component design based on
mathematical abstractions to classes

Based on public-domain standards
— MPI, HDF5
Chombovis: visualization package based on VTK, HDF5

« Layered hierarchical properly nested meshes
.

Adaptivity in both space and time
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Unsplit + Projection AMR Implementation

* Implemented the Unsplit method using CHOMBO
« Solenoidal B is achieved via projection, solving the elliptic
equation r?f=r¢ B
— Solved using Multgrid on each level (union of rectangular meshes)
— Coarser level provides Dirichlet boundary condition for f
« Requires O(h?3) interpolation of coarser mesh f on boundary of fine level

— a “bottom smoother” (conjugate gradient solver) is invoked when
mesh cannot be coarsened

— Physical boundary conditions are Neumann df /dn=0 (Reflecting) or
Dirichlet

* Multigrid convergence is sensitive to block size

* Flux corrections at coarse-fine boundaries to maintain
conservation

— A consequence of this step: r¢ B=0 is violated on coarse
meshes in cells adjacent to fine meshes.

—~ Code is parallel
ddazam’ . .
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Treatment of parabolic flux terms

« Approach 1: Explicit
— Computed at time step ‘n’
— Magnetic reconnection results use this approach.

* Approach 2: Implicit treatment

— Implicit Runge Kutta, TGA Approach (Twizell, Gumel, Arigu,
Advances in Comp. Math. 6(3):333-352, 1996)

— Implemented for resistive terms in magnetic field equations
» Work for constant h
— Viscous and conductivity terms require non-constant
coefficient Helmholtz solvers (Work in progress)
* Quadratic interpolation (O(h3)) at coarse-fine
boundaries
— Corner terms required and obtained by linear interpolation

* Flux-refluxing step requires implicit solution on all
levels synchronized at the current time step.
- — Backward Euler used for this step
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Code verification — Plane wave propagation

* A plane wave is initialized
oblique to the mesh
Initial conditions for [-th
characteristic wave
W(x) = W,(x) + eexp(i k¢ x)
r |

« Plane wave chosen to
correspond to Alfven velocity
or fast magnetosonic sound
Speed

« Low b (=0.01)

» Poisson solve converged in 8
iterations to a max residual of
10-14

« 3D Wave example

reccrec|
.
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Code verification — Weak rotor problem

 |deal M
problem
uniform
Comput. P
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Code verification — Weak rotor problem

100

Residual

i ; + +

- ' L
"I Poisson solver convergence hjstol

1e-12
o]

2 4 B 8 10 12 14

T

Mass +
Energy <

x
x
1e-06 |- = X o~
<X

=<

= x
) 7 e el E T

o] *;++9zx+*+ ********* e o Sl B R e e ~++ -+ R S e I
XX x

5 Ol N

X
.19-06 R B EHEEf i l B i i i~~~ — A e B S S A .= .

xxxxx -
) LETED |Doremmeceeommecmcemmmee oo e e e ]

10 20 30 40 50 60 70 im“

ime step 7 | PHVYSICS LHABURHTORY




Weak rotor — Resistive MHD (Implicit h)
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Magnetic Reconnection: IC and BCs

* Initial conditions on domain [-1:1]x[0:1]

p(z,4,0) = 1

fu,,,.;(as,y, 0) = 0

p(z,y,0) = 0.2

Y(r,y,0) = —coskyrsink,y
B.(z,y,0) = —(k2+ k;)% cos k,x sin kyy

3T
kx = ?, /i)'y =27
Z-component of B

* Boundary conditions
No mass flux, (open L/R boundaries)
T/B Perfectly conductlng walls

B-a=0 E-f=0

Dirichlet Temperature BC

e Other parameters: Re=103, Pe= 103
Dimensionless conductivity and viscosity Y-component of B
set to unity

* Resitivity variation to annihilate middle island

,-\| n=n"+M0n" =) [1 — exp(—l??.ﬁng)] X maz (0 —Szgn .Jl
AL I 1
mm:i-!::\??ﬁ — 0_1/5' J. Breslau, PhD thesis, Princeton University ::LI;IIIII:EST?.:BI:II;I:'IgHIIu




Reconnection S= 103

b

Stage 1
Middle isl
decays

Stage 2
Reconndctio




Reconnection S= 104

6 Level AMR run. Effective unigrid: 4096x2048.

Super-Alfvenic jets v/a >
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Pressure: Reconnection S= 104

High pressure region shows “patches”.
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Current; Re

Time sequence of
current (J,)




Reconnection layer details S= 104
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ReCOn neCthn S: 104 — Profiles in Reconnection Layer
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Results:Max ¢ scaling with S
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Reconnection Energy Budget

S=103 S=104
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Observations and Conclusion

 Observations

— Thin current layer well resolved
— For S=10%

» “patchy” reconnection

« Current layer is unstable

« Asymmetric evolution after current layer becomes unstable
induced by perturbations at mesh level.

— Reconnection not a smooth process — bouncing

« A conservative solenoidal B AMR MHD code was
developed
— Unsplit upwinding method for hyperbolic fluxes
— r¢ B=0 achieved via projection

e This preliminary study indicates that AMR is a viable
approach to efficiently resolve the near-singular

,_-\| current sheet in high Lundquist magnetic recogwpl
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Future Work

* High resolution parallel 2D magnetic
reconnection runs.

« |Implicit treatment of viscous/conductivity terms

« Two-fluid MHD with Hall effect

 Tokamak geometry

 |Implicit treatment of fast wave

« 3D magnetic reconnection

» Pellet injection AMR simulations (of
Importance to ITER and other fusion reactors)

frrrrrr |||‘ %
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Numerical Method: Upwind Differencing

n+l —e -~

direction
_—

of flow

n —e . -~

i+1

* The “one-way wave equiation” propagating to the

right:
1t X
« When the wave equation is discretized “upwind” (i.e.
using data at the old time level that comes from the

left the wave Stuuations becomes:
a n

yinﬂ:yin_l_a i-l'Yin):(l' ny i +ny o, n£l

* Advantages:
— Physical: The numerical scheme “knows” where the

= * Information is coming from
‘":‘:‘f\‘"l "" — Robustness: The new value is a linear interpolati

two old values and therefore no new extrema are int
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Numerical Method: Finite Volume Approach

« Conservative (divergence) form

of Cccl)Sservation laws:

—+N>xF =S
‘/..k::ahfab?dk dt :
b * Volume integral for
computational cell:
Wik a AXF +S
= "
. . oli faces b
I,k

Computational Cell

frrrrtr ﬂ

A =dxdz
* Fluxes of mass, momentum,

energy and magnetic field
entering from one cell to
another through cell interfaces
are the essence of finite

volume schemes. Thig
Riemann problem.gpppl
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Symmetrizable MHD Equations

* The symmetrizable MHD equations can be written in

a near-conservative form (Godunov, Numerical Methods for
Mechanics of Continuum Media, 1, 1972, Powell et al., J. Compuit.
Phys., vol 154, 1999):

® r o) : e ( ru ) (")T.I[.]T e 0 o

q¢ ru T 7. ¢ ruu+(pts5B*)- wBB T . ¢ 4ip ®

X(;\ ~\7 =- g -

Mg veipr B 1 s tpr etk 2o | T OO ey

B P } & uB - Bu BI'O &€ u g
 Deviation from total conservative form iIs of the order

of N>B truncation errors

« The symmetrizable MHD equations lead to the 8-
wave method. The eigenvalues are

A={u,u,u+ ¢ U — Co, U+ CF, U — Cf, U+ C5, U — Cy}

— The fluid velocity advects both the entropy and div(B)

’\l \ in the 8-wave formulation i'P P Pl
Frrererer ﬂ
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Numerical method: Riemann Solver

The eigenvalues and eigenvectors
of the Jacobian, dF/dU are at the
heart of the Riemann solver:

pL UL P, B PR UR, PR/ BR X

* Discontinuous initial condition

— Interaction between two states

— Transport of mass, momentum,
energy and magnetic flux
through the interface due to
waves propagating in the two
media

 Riemann solver calculates
~ interface fluxes from left and

cecere?] ight states

1 14

Fir :_(FL + FR)' Sd Rkll lek(UR - UL)
2 2 k=1

— Each wave is treated in an upwind

manner

— The interface flux function is
constructed from the individual
upwind waves

— For each wave the artificial
dissipation (necessary for stability)
IS proportional to the corresponding
wave speed
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Unsplit method — Basic concept

* Original idea by P. Colella (Colella, J. Comput. Phys., Vol 87
1990)

« Consider a two dimensional scalar advection equation

» Tracing back characteristics at t+D t

) {

« EXxpressed as predictor-corrector
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Unsplit method: Hyperbolic conservation laws

* Hyperbolic conservation laws
U Dil oFt _
—— =
ot =0 ox
« Expressed in “primitive” variables

W == ... OW¢
W+d§=%A(W) =S

oz
A =VyW -VyF® - VU
S'=VyW -8

* Require a second order estimate of fluxes
1
F'2  ~ g + (i + Le)h, ™ + LAt)

- i-l—%e‘t
r.r’:l}l 1
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Unsplit method: Hyperbolic conservation laws

« Compute the effect of normal derivative terms and source term on
the extrapolation in space and time from cell centers to cell faces

« Compute estimates of F9 for computing 1D Flux derivatives

TFd/ 9 x
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Unsplit method: Hyperbolic conservation laws

« Compute final correction to W, ¢ , due to final transverse derivatives

« Compute final estimate of fluxes

* Update the conserved quantities

 Procedure described for D=2. For D=3, we need additional corrections to

’\I -account for (1,1,1) diagonal coupling Pppl
SLLELALY r =2 requires 4 Rieman solves per time step
rreemee D=3 requires 12 Riemann solves per time step PHUSICS LHBORATORY




The r¢ B=0 Problem

- Conservation of N>B =0:
— Analytically: if N>B =0 at t=0 than it remains zero at all times
— Numerically: In upwinding schemes the curl and div operators
do not commute
* Approaches:

— Purist: Maxwell’'s equations demand N>B =0 exactly, so N>B
must be zero numerically

— Modeler: There is truncation error in components of B, so
what is special in a particular discretized form of N>X8?

* Purposes to control N>B numerically:
— To improve accuracy
— To improve robustness
— To avoid unphysical effects (Parallel Lorentz force)

JII
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Approaches to address the r¢ B=0 constraint

« 8-wave formulation: r¢ B = O(h?) (Powell et al, JCP 1999; Brackbill and Barnes,
JCP 1980)

» Constrained Transport (Balsara & Spicer JCP 1999, Dai & Woodward JCP 1998,
Evans & Hawley Astro. J. 1988)

— Field Interpolated/Flux Interpolated Constrained Transport
— Require a staggered representation of B
— Satisfy r¢ B=0 at cell centers using face values of B

« Constrained Transport/Central Difference (toth JCP 2000)
— Flux Interpolated/Field Interpolated
— Satisfy r¢ B=0 at cell centers using cell centered B

* Projection Method

« Vector Potential (Claim: CT/CD schemes can be cast as an
“underlying” vector potential. Evans and Hawley, Astro. J. 1988)

* Require ad-hoc corrections to total energy
* May lead to numerical instability (e.g. negative pressure — ad-hoc

= fix based on switching between total energy and entropy
""'::‘1\‘"| iformulation by Balsara) P P Pl
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r¢ B=0 using a Vector Potential

* The original 8-wave formulation proved numerically unstable for a
2D reconnection problem (Samtaney et al, Sherwood 2002)

« Stability was achieved with a combination of the generalized
upwinding (8-wave formulation by Powell et al. JCP vol 154, 284-309, 1999)
and vector potential in 2D

« Vector potential evolved using central differences
« At end of each stage in time integration replace x and y
components of B using vector potential
— Central difference approximation of div(B) is zero
* |ssues with vector potential + upwinding approach
— Ad-hoc
— Loss of accuracy

- — 3D requires a gauge condition =>» Elliptic problem

rm .;i‘— Non conservative (but 2D Magnetic reconnection does n(%

sl discontinuities)
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r¢ B=0 by Projection

 Compute the estimates to the fluxes F™2_,, ; using
the unsplit formulation

« Use face-centered values of B to compute r¢ B.
Solve the Poisson equation r?f =r ¢ B

« Correct B at faces: B=B-rf
- Correct the fluxes F™12,,,  with projected values of B

« Update conservative variables using the fluxes

— The non-conservative source term S(U) a r¢ B has been
algebraically removed

* On uniform Cartesian grids, projection provides the
< smallest correction to remove the divergence of B.

.-::q\q .J1Toth, JCP 2000) %P P P I-

\ PRINCETON PLASMA
HERKELEY L m .

PHVYSICS LABORATORY



r¢ B=0 by Projection

* Does the nature of the equations change?
— Hyperbolicity implies finite signal speed
— Do corrections to B via r?f =r¢ B violate hyperbolicity?

« Conservation implies that single isolated monopoles
cannot occur. Numerical evidence suggests these
occur in pairs which are spatially close.

— Corrections to B behave as a 1/r2 in 2D and 1/r3 in 3D

* Projection does not alter the order of accuracy of the
upwinding scheme and is consistent
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AMR Implementation

[ ]
Ny

i 4
receeee] %

CHOMBO framework used for adaptive mesh refinement
Implemented the unsplit method for hyperbolic fluxes
Parabolic fluxes treated explicitly
— Quadratic interpolation (O(h3)) at coarse-fine boundaries
Solenoidal B is achieved via projection, solving the elliptic equation r?f =r¢ B

— Solved using Multgrid on each level (union of rectangular meshes)

— Coarser level provides Dirichlet boundary condition for f
* Requires O(h?) interpolation of coarser meshf on boundary of fine level

— a “bottom smoother” (conjugate gradient solver) is invoked when mesh cannot be
coarsened

— Physical boundary conditions are Neumann df /dn=0 (Reflecting) or Dirichlet
Multigrid convergence is sensitive to block size
Flux corrections at coarse-fine boundaries to maintain conservation

— A consequence of this step: r¢ B=0 is violated on coarse meshes in cells
adjacent to fine meshes.

Code is parallel
Second order accurate in space and time
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Adaptive Mesh Refinement with Chombo

« Chombo is a collection of C++ libraries for implementing block-
structured adaptive mesh refinement (AMR) finite difference
calculations (http://www.seesar.|lbl.gov/ANAG/chombo)

— (Chombo is an AMR developer’s toolkit)
« Mixed language model
— C++ for higher-level data structures
— FORTRAN for regular single grid calculations

— C++ abstractions map to high-level mathematical description of AMR
algorithm components

Reusable components. Component design based on
mathematical abstractions to classes

Based on public-domain standards
— MPI, HDF5
Chombovis: visualization package based on VTK, HDF5

« Layered hierarchical properly nested meshes
.

Adaptivity in both space and time
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Chombo Layered Design

rerrrrer

’\l A — elliptic AMR solvers %‘

Chombo layers correspond to different levels of functionality in
the AMR algorithm space

Layer 1: basic data layout

— Multidimensional arrays and set calculus

— data on unions of rectangles mapped onto distributed memory
Layer 2: operators that couple different levels

— conservative prolongation and restriction

— averaging between AMR levels

— interpolation of boundary conditions at coarse-fine interfaces
— refluxing to maintain conservation at coarse-fine interfaces
Layer 3: implementation of multilevel control structures

— Berger-Oliger time stepping

— multigrid iteration

Layer 4: complete PDE solvers

— Godunov methods for gas dynamics

— ldeal and single-fluid resistive MHD
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