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Outline

• MHD equations and numerical method
– Unsplit upwinding method

• div(B) issues
– Projection method

• Semi-implicit MHD code – Progress.
• Results

– Plane wave propagation
– Rotor problem
– Magnetic reconnection

• Conclusion and future work
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Electromagnetic Coupling (courtesy T. Gombosi, Univ. of Michigan)

• Weakly coupled formulation
– Hydrodynamic quantities in conservative form, 

electrodynamic terms in source term
– Hydrodynamic conservation & jump conditions
– One characteristic wave speed (ion-acoustic)

• Tightly coupled formulation
– Fully conservative form
– MHD conservation and jump conditions
– Three characteristic wave speeds (slow, Alfvén, fast)
– One degenerate eigenvalue/eigenvector
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Single-fluid resistive MHD Equations

• Equations in conservation form
Parabolic

Hyperbolic

Reynolds no.

Lundquist no.

Peclet no.
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Numerical Method

• MHD Equations written in symmetrizable near-conservative form 
(Godunov, Numerical Methods for Mechanics of Continuum Media, 1,  1972, Powell et al., 
J. Comput. Phys., vol 154, 1999).

– Deviation from total conservative form is of the order of ∇⋅B truncation errors

• The symmetrizable MHD equations lead to the 8-wave method. 
– The fluid velocity advects both the entropy and div(B)

• Finite volume approach. Hyperbolic fluxes determined using the unsplit
upwinding method (Colella, J. Comput. Phys., Vol 87, 1990)

– Predictor-corrector.
– Fluxes obtained by solving Riemann problem
– Good phase error properties due to corner 

coupling terms
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The r¢ B=0 Problem
• Conservation of ∇⋅B =0:

– Analytically: if ∇⋅B =0 at t=0 than it remains zero at all times
– Numerically: In upwinding schemes the curl and div operators do not commute

• Purposes to control ∇⋅B numerically:
– To improve accuracy
– To improve robustness
– To avoid unphysical effects (Parallel Lorentz force)

• 8-wave formulation: r¢ B = O(hα) (Powell et al, JCP 1999; Brackbill and Barnes, JCP 1980)

• Constrained Transport (Balsara & Spicer JCP 1999, Dai & Woodward JCP 1998, Evans & Hawley 
Astro. J. 1988)

• Constrained Transport/Central Difference (Toth JCP 2000) 

• Projection Method
• Vector Potential (Claim: CT/CD schemes can be cast as an “underlying” 

vector potential. Evans and Hawley, Astro. J. 1988)
• Require ad-hoc corrections to total energy
• May lead to numerical instability (e.g. negative pressure – ad-hoc fix 

based on switching between total energy and entropy formulation by 
Balsara)
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r¢ B=0 by Projection
• Compute the estimates to the fluxes Fn+1/2

i+1/2,j using the unsplit formulation
• Use face-centered values of B to compute r¢ B. 

Solve the Poisson equation r2φ = r ¢ B
• Correct B at faces: B=B-rφ
• Correct the fluxes  Fn+1/2

i+1/2,j with projected values of B
• Update conservative variables using the fluxes 

– The non-conservative source term S(U) α r¢ B has been algebraically removed

• On uniform Cartesian grids, projection provides the smallest correction to 
remove the divergence of B. (Toth, JCP 2000)

• Does the nature of the equations change? 
– Hyperbolicity implies finite signal speed
– Do corrections to B via r2φ=r¢ B violate hyperbolicity?

• Conservation implies that single isolated monopoles cannot occur. Numerical 
evidence suggests these occur in pairs which are spatially close.

– Corrections to B behave as α 1/r2 in 2D and 1/r3 in 3D

• Projection does not alter the order of accuracy of the upwinding scheme and is 
consistent
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Adaptive Mesh Refinement with Chombo
• Chombo is a collection of C++ libraries for implementing block-

structured adaptive mesh refinement (AMR) finite difference 
calculations  (http://www.seesar.lbl.gov/ANAG/chombo)
– (Chombo is an AMR developer’s toolkit)

• Mixed language model
– C++ for higher-level data structures
– FORTRAN for regular single grid calculations
– C++ abstractions map to high-level mathematical description of AMR 

algorithm components 
• Reusable components.  Component design based on 

mathematical abstractions to classes
• Based on public-domain standards

– MPI, HDF5
• Chombovis: visualization package based on VTK, HDF5
• Layered hierarchical properly nested meshes
• Adaptivity in both space and time
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Unsplit + Projection AMR Implementation

• Implemented the Unsplit method using CHOMBO
• Solenoidal B is achieved via projection, solving the elliptic 

equation r2φ=r¢ B
– Solved using Multgrid on each level (union of rectangular meshes)
– Coarser level provides Dirichlet boundary condition for φ

• Requires O(h3) interpolation of coarser mesh φ on boundary of fine level
– a “bottom smoother” (conjugate gradient solver) is invoked when 

mesh cannot be coarsened
– Physical boundary conditions are Neumann dφ/dn=0 (Reflecting) or 

Dirichlet

• Multigrid convergence is sensitive to block size
• Flux corrections at coarse-fine boundaries to maintain 

conservation
– A consequence of this step: r¢ B=0 is violated on coarse 

meshes in cells adjacent to fine meshes. 

• Code is parallel
• Second order accurate in space and time
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Treatment of parabolic flux terms
• Approach 1: Explicit

– Computed at time step ‘n’
– Magnetic reconnection results use this approach.

• Approach 2: Implicit treatment
– Implicit Runge Kutta, TGA Approach (Twizell, Gumel, Arigu, 

Advances in Comp. Math. 6(3):333-352, 1996)
– Implemented for resistive terms in magnetic field equations

• Work for constant η
– Viscous and conductivity terms require non-constant 

coefficient Helmholtz solvers (Work in progress)
• Quadratic interpolation (O(h3)) at coarse-fine 

boundaries
– Corner terms required and obtained by linear interpolation

• Flux-refluxing step requires implicit solution on all 
levels synchronized at the current time step.
– Backward Euler used for this step
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Code verification – Plane wave propagation

• A plane wave is initialized 
oblique to the mesh
Initial conditions for l-th
characteristic wave
W(x) = W0(x) + ε exp(i k¢ x) 

r_l
• Plane wave chosen to 

correspond to Alfven velocity 
or fast magnetosonic sound 
speed

• Low β (=0.01)
• Poisson solve converged in 8 

iterations to a max residual of 
10-14

• 3D Wave example
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Code verification – Weak rotor problem
• Ideal MHD simulation of the “Rotor” 

problem: high density rotating fluid in a 
uniform magnetic field. (Balsara and Spicer,  J. 
Comput. Phys. ,  Vol 149, 1999)

• Independent code exists for cross 
verification (R. Crockett, Astrophysics, 
UC Berkeley). Detailed comparison in 
progress.

P with B streamlines
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Code verification – Weak rotor problem

Conservation

ρ with streamlines

φ

Poisson solver convergence history

Conservation history
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Weak rotor – Resistive MHD (Implicit η)

ρ with velocity streamlines

Conservation

Pressure with B field lines
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Magnetic Reconnection: IC and BCs
• Initial conditions on domain [-1:1]x[0:1]

• Boundary conditions
No mass flux, (open L/R boundaries)
T/B Perfectly conducting walls

Dirichlet Temperature BC
• Other parameters: Re=103, Pe= 103

Dimensionless conductivity and viscosity
set to unity

• Resitivity variation to annihilate middle island 

Z-component of B

Y-component of B

J. Breslau, PhD thesis, Princeton University
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Reconnection S= 103

Stage 1
Middle island
decays

Stage 2
Reconnection

Stage 3
Decay

BzByUnsplit, B projection, explicit treatment of parabolic fluxes
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Reconnection S= 104

Super-Alfvenic jets v/a > 4
Reconnection rates show 
computation is well-resolved

Thin O(η1/2) high pressure region

6 Level AMR run. Effective unigrid: 4096x2048.
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Pressure: Reconnection S= 104 

High pressure region shows “patches”.

1.669 1.713 1.732

1.760 1.876 1.942

1.978 2.253 2.593
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Current: Reconnection S= 104 

Time sequence of 
current (Jz)
Thin current layer
“clumps” followed

by plasma ejections

Asymmetric

1.669 1.713 1.732

1.760 1.876 1.942

1.978 2.253 2.593
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Reconnection layer details S= 104 
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Reconnection S= 104 – Profiles in Reconnection Layer
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Results:Max     scaling with S
.
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Reconnection Energy Budget

S=103 S=104
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Observations and Conclusion
• Observations

– Thin current layer well resolved 
– For S=104

• “patchy” reconnection
• Current layer is unstable
• Asymmetric evolution after current layer becomes unstable 

induced by perturbations at mesh level.
– Reconnection not a smooth process – bouncing

• A conservative solenoidal B AMR MHD code was 
developed
– Unsplit upwinding method for hyperbolic fluxes
– r¢ B=0 achieved via projection

• This preliminary study indicates that AMR is a viable 
approach to efficiently resolve the near-singular 
current sheet in high Lundquist magnetic reconnection
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Future Work

• High resolution parallel 2D magnetic 
reconnection runs.

• Implicit treatment of viscous/conductivity terms
• Two-fluid MHD with Hall effect
• Tokamak geometry
• Implicit treatment of fast wave 
• 3D magnetic reconnection
• Pellet injection AMR simulations (of  

importance to ITER and other fusion reactors)
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Numerical Method: Upwind Differencing

• The “one-way wave equation” propagating to the 
right:

• When the wave equation is discretized “upwind” (i.e. 
using data at the old time level that comes from the 
left the wave equations becomes:

• Advantages:
– Physical: The numerical scheme “knows” where the 

information is coming from
– Robustness: The new value is a linear interpolation between 

two old values and therefore no new extrema are introduced
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• Conservative (divergence) form 
of conservation laws:

• Volume integral for 
computational cell:

• Fluxes of mass, momentum, 
energy and magnetic field 
entering from one cell to 
another through cell interfaces 
are the essence of finite 
volume schemes. This is a 
Riemann problem.

dU
dt

+ ∇ ⋅ F = S

Numerical Method:  Finite Volume Approach

dU i, j ,k

dt
= − A ⋅ F

faces
∑ + S i, j ,k
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Symmetrizable MHD Equations
• The symmetrizable MHD equations can be written in 

a near-conservative form (Godunov, Numerical Methods for 
Mechanics of Continuum Media, 1,  1972, Powell et al., J. Comput. 
Phys., vol 154, 1999):

• Deviation from total conservative form is of the order 
of ∇⋅B truncation errors

• The symmetrizable MHD equations lead to the 8-
wave method. The eigenvalues are

– The fluid velocity advects both the entropy and div(B)

in the 8-wave formulation
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Numerical method: Riemann Solver

• Discontinuous initial condition
– Interaction between two states
– Transport of mass, momentum, 

energy and magnetic flux 
through the interface due to 
waves propagating in the two 
media

• Riemann solver calculates 
interface fluxes from left and 
right states

• The eigenvalues and eigenvectors 
of the Jacobian, dF/dU are at the 
heart of the Riemann solver:

– Each wave is treated in an upwind 
manner

– The interface flux function is 
constructed from the individual 
upwind waves

– For each wave the artificial 
dissipation (necessary for stability) 
is proportional to the corresponding 
wave speed
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Unsplit method – Basic concept
• Original idea by P. Colella (Colella, J. Comput. Phys., Vol 87, 

1990)
• Consider a two dimensional scalar advection equation

• Tracing back characteristics at t+∆ t

• Expressed as predictor-corrector

• Second order in space and time
• Accounts for information propagating across corners of zone

-U∆ t
A3 A1

A4 A2

Corner coupling

I II
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Unsplit method: Hyperbolic conservation laws

• Hyperbolic conservation laws

• Expressed in “primitive” variables

• Require a second order estimate of fluxes
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Unsplit method: Hyperbolic conservation laws

• Compute the effect of normal derivative terms and source term on
the extrapolation in space and time from cell centers to cell faces

• Compute estimates of Fd for computing 1D Flux derivatives 
∂ Fd / ∂ xd

- I       +

I
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Unsplit method: Hyperbolic conservation laws
• Compute final correction to W I,§,d due to final transverse derivatives

• Compute final estimate of fluxes

• Update the conserved quantities

• Procedure described for D=2. For D=3, we need additional corrections to 
account for (1,1,1) diagonal coupling
D=2 requires 4 Rieman solves per time step
D=3 requires 12 Riemann solves per time step

II
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The r¢ B=0 Problem
• Conservation of ∇⋅B =0:

– Analytically: if ∇⋅B =0 at t=0 than it remains zero at all times
– Numerically: In upwinding schemes the curl and div operators 

do not commute

• Approaches:
– Purist: Maxwell’s equations demand ∇⋅B =0 exactly, so ∇⋅B 

must be zero numerically
– Modeler: There is truncation error in components of B, so 

what is special in a particular discretized form of ∇⋅B?

• Purposes to control ∇⋅B numerically:
– To improve accuracy
– To improve robustness
– To avoid unphysical effects (Parallel Lorentz force)
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Approaches to address the r¢ B=0 constraint 
• 8-wave formulation: r¢ B = O(hα) (Powell et al, JCP 1999; Brackbill and Barnes, 

JCP 1980)

• Constrained Transport (Balsara & Spicer JCP 1999, Dai & Woodward JCP 1998, 
Evans & Hawley Astro. J. 1988)

– Field Interpolated/Flux Interpolated Constrained Transport 
– Require a staggered representation of B
– Satisfy r¢ B=0 at cell centers using face values of B

• Constrained Transport/Central Difference (Toth JCP 2000) 

– Flux Interpolated/Field Interpolated
– Satisfy r¢ B=0 at cell centers using cell centered B

• Projection Method
• Vector Potential (Claim: CT/CD schemes can be cast as an 

“underlying” vector potential. Evans and Hawley, Astro. J. 1988)
• Require ad-hoc corrections to total energy
• May lead to numerical instability (e.g. negative pressure – ad-hoc 

fix based on switching between total energy and entropy 
formulation by Balsara)
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r¢ B=0 using a Vector Potential
• The original 8-wave formulation proved numerically unstable for a 

2D reconnection problem (Samtaney et al, Sherwood 2002)

• Stability was achieved with a combination of the generalized 
upwinding (8-wave formulation by Powell et al. JCP vol 154, 284-309, 1999)

and vector potential in 2D

• Vector potential evolved using central differences

• At end of each stage in time integration replace x and y 
components of B using vector potential

– Central difference approximation of div(B) is zero 

• Issues with vector potential + upwinding approach

– Ad-hoc 

– Loss of accuracy 

– 3D  requires a gauge condition  è Elliptic problem

– Non conservative (but 2D Magnetic reconnection does not exhibit 
discontinuities)
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r¢ B=0 by Projection
• Compute the estimates to the fluxes Fn+1/2

i+1/2,j using 
the unsplit formulation

• Use face-centered values of B to compute r¢ B. 
Solve the Poisson equation r2φ = r ¢ B

• Correct B at faces: B=B-rφ

• Correct the fluxes  Fn+1/2
i+1/2,j with projected values of B

• Update conservative variables using the fluxes 
– The non-conservative source term S(U) α r¢ B has been 

algebraically removed

• On uniform Cartesian grids, projection provides the 
smallest correction to remove the divergence of B. 
(Toth, JCP 2000)
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r¢ B=0 by Projection
• Does the nature of the equations change? 

– Hyperbolicity implies finite signal speed

– Do corrections to B via r2φ=r¢ B violate hyperbolicity?

• Conservation implies that single isolated monopoles 
cannot occur. Numerical evidence suggests these 
occur in pairs which are spatially close.
– Corrections to B behave as α 1/r2 in 2D and 1/r3 in 3D

• Projection does not alter the order of accuracy of the 
upwinding scheme and is consistent
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AMR Implementation
• CHOMBO framework used for adaptive mesh refinement
• Implemented the unsplit method for hyperbolic fluxes
• Parabolic fluxes treated explicitly 

– Quadratic interpolation (O(h3)) at coarse-fine boundaries
• Solenoidal B is achieved via projection, solving the elliptic equation r2φ=r¢ B

– Solved using Multgrid on each level (union of rectangular meshes)
– Coarser level provides Dirichlet boundary condition for φ

• Requires O(h3) interpolation of coarser mesh φ on boundary of fine level
– a “bottom smoother” (conjugate gradient solver) is invoked when mesh cannot be 

coarsened
– Physical boundary conditions are Neumann dφ/dn=0 (Reflecting) or Dirichlet

• Multigrid convergence is sensitive to block size
• Flux corrections at coarse-fine boundaries to maintain conservation

– A consequence of this step: r¢ B=0 is violated on coarse meshes in cells 
adjacent to fine meshes. 

• Code is parallel
• Second order accurate in space and time
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Adaptive Mesh Refinement with Chombo
• Chombo is a collection of C++ libraries for implementing block-

structured adaptive mesh refinement (AMR) finite difference 
calculations  (http://www.seesar.lbl.gov/ANAG/chombo)
– (Chombo is an AMR developer’s toolkit)

• Mixed language model
– C++ for higher-level data structures
– FORTRAN for regular single grid calculations
– C++ abstractions map to high-level mathematical description of AMR 

algorithm components 
• Reusable components.  Component design based on 

mathematical abstractions to classes
• Based on public-domain standards

– MPI, HDF5
• Chombovis: visualization package based on VTK, HDF5
• Layered hierarchical properly nested meshes
• Adaptivity in both space and time
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Chombo Layered Design
• Chombo layers correspond to different levels of functionality in 

the AMR algorithm space
• Layer 1: basic data layout

– Multidimensional arrays and set calculus
– data on unions of rectangles mapped onto distributed memory

• Layer 2: operators that couple different levels
– conservative prolongation and restriction
– averaging between AMR levels
– interpolation of boundary conditions at coarse-fine interfaces
– refluxing to maintain conservation at coarse-fine interfaces

• Layer 3: implementation of multilevel control structures
– Berger-Oliger time stepping
– multigrid iteration

• Layer 4: complete PDE solvers
– Godunov methods for gas dynamics
– Ideal and single-fluid resistive MHD
– elliptic AMR solvers


