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Nonlocal closure relations required for fluid simulations
of high-performance plasmas.

® | ocal closures — depend on local gradients of T' and .

® Nonlocal closures — depend on perturbed T and « all along magnetic field lines.
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Outline

® Derive nonlocal closures from gryo/bounce-averaged kinetic equation.
® Emphasize continuous mapping from collisional to nearly collisionless regimes
for nonlocal closures which embody:
1. Landau,
2. collisional, and
3. particle trapping physics in
4. general toroidal geometry.

® Use massively parallel semi-implicit implementation of nonlocal closures to
make long time scale fluid simulations possible.

® Apply nonlocal closures to studies of heat flow dynamics in high-performance,
toroidal fusion experiments.
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Close fluid equations with kinetically derived ¢ and 11.

® Species evolution equations and closure moments for five moment model:
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Close fluid equations with kinetically derived ¢ and 11.

® Species evolution equations and closure moments for five moment model:

® Parallel dynamics dominant in magnetized fusion plasmas:
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Take Chapman-Enskog-like approach to derive closures.

® Chapman and Enskog proposed following form for f *: (

f=Iu+F= ZZ(QWT T ), + F(Z,7,t).

® Use fluid moment equations to rewrite df s /dt in full kinetic equation

dF df m
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® Gyro-average (pL V.1 << 1) and focus on parallel dynamics:
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Parallel component of closures dominant.

® Temperature change due to slow, resistive evolution obeys
6-(Cj'||—|—q_]_)=§°67|| —ﬁ-lﬁ_ ﬁJ_T ~ 0.
~—
k1 /n =~ 1(m?/s)

® Diffusive, Braginskii closure sets 2 |

gy = -V T with K| >> KL

® For long-mean-free-path plasmas *>*°>%% | | | | |

’I’Leq’Uth > / / / /
q = W/L dL' [T(-L") - T(L")] K(L', L).
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Changing magnetic topology results in large qj,.

® ¢ flattens T inside islands reducing heat confinement and possibly drives
neoclassical tearing modes (NTMSs).
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Changing magnetic topology results in large qj,.

® Particles see T perturbations of scale length, L+, which is comparable to the
collision length, L,.
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Nonlocal closures involve multiple parallel scale lengths.
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Average over bounce motion to handle short scale length.

® Expand 7 - V = @ - (Vi + V1) and apply bounce-average operator,
() = ¢ di /vy, to annihilate (7 - V;)F:
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® Balance free-streaming and collisions with temperature gradient drive for
nonlocal g closure,

0
<’I7|| . VLFO — C(FO —I—f](\)/_f)> = — <Li’/2’17|| -VLTO'C];—Ag>.
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Expand in eigenfunction basis to handle pitch angle variable, &.

® Solve separated eigenvalue equation involving bounce-averaged pitch-angle
scattering operator *%
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Solve for I and calculate nonlocal q, closure.

® Write F as vector of coefficients, F* = S _ F,C,, (&) satisfying

n=1

#® Spatially nonlocal expression for g **: H [
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® Collisional limit yields ¢y = —x VT
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Continuous map for g, as collisionality varies.

® Heat flow response due to sinusoidal T' perturbations reduced by particle
trapping in collisional and nearly collisionless regimes.
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