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1. INTRODUCTION

This report contains a description of the neutral beam heating and current drive module
Beams, that was developed at Georgia Tech for the SUPERCODE, the new systems and
operations code for the ITER EDA [1]. The NB module calculates profiles of the neutral
beam deposition, fast ion pressure, beam heating power, and neutral beam driven current
density. It also computes global parameters such as current drive efficiencies, beam
shinethrough, fast beam ion beta, and the fusion power and neutron production due to
beam-plasma interactions.

The most important consideration during the development of this module was to make it
computationally fast without compromising physical accuracy. We believe that through
careful selection of physical models and optimized coding, these conflicting requirements
have been  largely met. As a result, the SuperCode has now the ability to perform self-
consistent calculations involving NB heating and current drive. This capability is very
important for the study of sub-ignited, hybrid, or steady-state ITER and post-TFTR
reactor operating scenarios. It is also the first time that a systems code has had such
capabilities, usually found only in 1½-D plasma transport codes.

2. PHYSICAL MODELS

2.1. Deposition Profiles

The first step in any computation  involving neutral beam injection in a plasma, is the
calculation of the neutral beam deposition profile: As the fast atoms enter the plasma,
they become ionized through interactions with the background electrons and ions
(electron impact ionization, ion impact ionization, charge exchange). The number of
atoms ionized within the toroidal volume element ( )V dρ ρ′  is equal to:
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V

ρ ρ ρ′ (1)

where I0 is the (atomic equivalent) injection current in A, Vp is the plasma volume, and
H(�) is the NB deposition profile1. Therefore, the fast ion source in the plasma due to the
NB injection is:
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1 For systems based on positive-ion sources, each beamline has three energy components (E, E/2, E/3) and
therefore three different deposition profiles are calculated.
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Several techniques are available for the calculation of the NB deposition profile H(�) in
toroidal plasmas. They are based either on Monte Carlo methods [2], or on some type of
pencil-beamlet techniques [3,4]. The model chosen for the SUPERCODE is based on the
diffuse-beam model developed by Rome et al [3]. The model is computationally fast
while retaining most of the important physics, and it is exact for midplane injection in a
tokamak plasma with shifted elliptical flux surfaces of variable elongation. The
SUPERCODE implementation of the model is similar to that found in the PROCTR
transport code [5], but extended to allow flux surfaces with variable elongation, and
beams with rectangular cross sections and different power distributions.

According to the diffuse beam model, the deposition profile due to a beamlet with
tangency radius Rb and distance above the midplane Zb is [5]:
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In the expression above, �(�) is the mean free path of the neutral beam ions in the plasma
as a function of the flux surface label ���assumed to be equal to the midplane radius
here), and is equal to 1 ( )e effn σ  where effσ  is the effective beam stopping cross section

which is calculated using the latest fits by C. Boley [6,7] that are valid for any plasma
parameters and beam energies between 10 - 10,000 keV. The quantities ���� and ���) are
the MHD elongation and plasma shift profiles, while a prime ′ denotes the derivative
d/d�. The quantity R±  represents the two possible intersections of the pencil beam with
the flux surface with label �, the plus sign corresponding to the outer intersection and the
minus sign to the inner one. For shifted elliptical cross sections with variable elongation
we have,

2
2

0 2( )
( )
bZR R ρ ρ

κ ρ± = + ∆ ± − (4)

if the intersection exists (i.e. if the term in the square root is positive.)  The quantities
0 1 and D D  describe the attenuation of the beamlet along its optical path:
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Rin is the major radius at the first entrance of the beamlet into the plasma at the plane Zb

which, for our model, is equal to 1
22 2 2

0 ( )b aR a Z κ+ −  where a is the minor radius. Notice

that inside the integrand of D, the mean free path  �(�) must be calculated at the flux
surface ρ′  that corresponds to the major radius R. This is found by solving the following
nonlinear equation for �,

[ ]
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0 2( ( ))
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κ ρ
= − + ∆ + (6)

Finally, the parameter dγ  is equal to one if the beamlet intersects a given flux surface

twice (double pass).

The expression for ( , , )b bh R Zρ±  above, is for a pencil beam. To find the deposition

profile for a beam with a finite cross section we would have to integrate the above result
over the face of the beam, taking into account its shape and power density distribution
within its cross-section. Therefore, the total deposition profile  for the flux surface with
label ��including the contributions from the outer and inner intersections��would be,

( ) ( ) ( )H H Hρ ρ ρ+ −= +

where,

0

( ) 2 ( , ) ( , , )
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Z R

b b b b b b b
R

H dZ dR J R Z h R Zρ ρ± ±= � � (7)

We have made the assumption of up-down symmetry, so we only have to evaluate the
integral for the upper half of the plasma cross section, resulting to the factor of 2 in front
of the expression above.  The integration limits , ,  and u L uZ R R , as well as the current (or
power) distribution function within the beam cross section, ( )b b bJ R Z , depend on the

shape of the beam. Two different options for the beam shape are available, circular and
rectangular, and for each shape we can have either uniform power  distribution or a
distribution with Gaussian shape.
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Circular Beam:
The cross section shape of the finite beam is a circle of radius rb. For a uniform current
distribution within the beam cross section, ( )b b bJ R Z C= , where 21 bC rπ=

(normalization constant). For a Gaussian current distribution we have,

( )2 2( , ) exp , for b b b R bJ R Z C r r rσ= − ≤ (8)

where Rσ is the radial Gaussian half-width and 
1

2 2 2( )b t br Z R R� �= + −� �  with Rt being the

beam tangency radius. The normalization constant C is determined from the requirement

0
2 ( ) 1br

bJ r rdrπ =�  and is equal to:
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The integration limits in the case of a circular beam are:
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Rectangular Beam:
The shape of the beam cross section here is a rectangle with height h and width w. The
current distribution function for a uniform distribution is ( , )b b bJ R Z = 1/wh. In order to be

able to model off-axis deposition, a bi-Gaussian distribution function is also available.
For this, the function ( , )b b bJ R Z   has the form,
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(11)

where Rt is the beam tangency radius, Zs is the position above the midplane of the peak of
the distribution, and Zσ  is the Gaussian half-width in the vertical direction. The

normalization constant C is equal to:
1
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(12)

The integration limits in the case of the rectangular beam are:



6

[ ]

[ ]

min ( ), 2 ,
2 ,  and

min , 2

u

L t

u t

Z h
R R w

R R R w

ρκ ρ

±

=
= −

= +
(13)

This bi-Gaussian power distribution gives our model a considerable degree of flexibility
in modeling different injection geometries. For  Zs = 0, we have the case of a rectangular
beam with a centerline lying on the midplane. If however  Zs ≠ 0, we can model off-axis

injection with a symmetric configuration of two rectangular beamlines having centerlines
above and below the midplane. Comparisons with the Monte Carlo NB deposition code
NFREYA indicate that with the proper choice of  Zs and �Z   we can even model off-

midplane injection at an angle with respect to the midplane, like the reference CDA case
for ITER [8].

Beam shinethrough

Since the deposition profile is equal to the fraction of fast ions deposited in a given flux
surface, it follows that the beam shinethrough sf , i.e. the fraction of the total injected

neutrals that were not ionized in the plasma, would be equal to:
11 ( ) ( )s

p V

f d V H
V

ρ ρ ρ′= − � (14)

After the calculation of the shinethrough, the deposition profile H(ρ) is normalized so
that its volume integral over the plasma is equal to the plasma volume.

Limitations of the model
The deposition profile calculated with this implementation of the diffuse-beam model, is
exact for midplane injection into a plasma with flux surfaces described by shifted ellipses
of variable elongation (i.e. the triangularity of the flux surfaces is neglected). Only then it
is possible to derive the quasi-analytic expressions described in this section. However,
this limitation is not as serious as one might think. Unless the beams are aimed at the
extreme outer part of the plasma near the X-ponts, the departure from the exact MHD
geometry is small as it can be seen from Figure 1.
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Figure 1: Comparison of flux surface geometries between the shifted ellipses with
variable elongation model (dotted line) and the exact MHD geometry (solid line), for the
ITER CDA.

Another limitation2 of the model is its restriction to beamlines with axes lying on the
midplane. However, as it was discussed above and will be demonstrated in  following
sections, we can get around this limitation, at least for beams of rectangular shape, by
using the bi-Gaussian power distribution option.

The model cannot take into account the detailed optics of the injection system (beam
focusing, beam divergence, beamline aperture considerations). These effects can be
included in an average sense, by an appropriate choice of the Gaussian half-widths in the
power distribution expressions.

Finally, the deposition profile calculated by this model is strictly speaking the birth
profile of the fast ions. The actual deposition profile would differ due to first orbit effects.
Here, we are making the assumption that first orbit effects are negligible and the fast ions
slow down on their birth flux surface.

                                                
2Strictly speaking, this is not an inherent limitation of the model but rather a choice of the present
implementation, to avoid having to integrate over the entire plasma cross section. Injection above (but still
parallel to) the midplane can be modeled if we abandon the up-down symmetry assumption.
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In spite of these limitations, the predictions of this semi-analytic deposition model agree
surprisingly well with calculations performed with more accurate, but computationally
expensive deposition codes. Several comparisons and benchmarks will be presented in
following sections of this report.

2.2. Heating and Current Drive

Once the neutral beam deposition profile is known, a number of beam-related quantities
can be evaluated. In this section the models for the beam heating and current drive are
described.

Beam heating:
The NB plasma absorbed heating profile, assuming instantaneous thermalization, is given
by the simple expression,

p f P
V

HNB s
NB

p

( ) ( ) ( )� �� �1 (15)

where NBP  is the injected NB power and sf  is the beam shinethrough. The fraction of this

power that is deposited into the plasma electrons and ions, is calculated using the fast ion
distribution function described in the following sections.

Neutral Beam Current Drive
The current driven by the fast ions as they slow down on the plasma electrons and ions on
each flux surface �, is equal to,

3 ˆ ( )f b bJ eZ d v f
B
⋅

≈ = ⋅�
J B

v b v (16)

where bZ  is the atomic number of the beam species and ( )bf v  is the fast ion distribution

function. In our model, the uniform field solution to the Fokker-Planck equation for the
fast ions is used [9]. This formalism does not take into account the possible trapping of
the fast ions, however this effect is expected to be small for tangential injection. It also
neglects the beam current density due to energy diffusion of the fast ions. Accordingly

( )bf v  is given by,
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for bv v≤ . In the above expression, 2  b b bv E m= is the initial velocity of the beam
ions, cv  is the fast ion velocity corresponding to the critical energy for slowing down,

( ) ˆcos vξ θ= = ⋅v b ,  bξ  is the initial pitch angle of the fast ions, and Ẑ  is defined as,

2

2

ln
ˆ

ln

i i bi b
i

i i bi i
i

n Z A
Z

n Z A

Λ
≡

Λ

�

�
(18)

Standard expressions from the literature have been used to evaluate the various plasma
parameters appearing above (collision times, Coulomb logarithms, critical slowing down
energies, etc.). See for example references [10,11].

In terms of this fast ion distribution function, the fast ion current density is equal to,
1

3

0 1

( ) ( , , )
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f b bJ eZ dv d v f vρ ξ ξ ρ ξ
−

= � � (19)

which after carrying out the angular integration reduces to,
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with , and .b c c by v v y v v= =  The integral I is evaluated numerically in the code at each

flux surface �.

The fast ion current is partially canceled by the electron return current induced by the
drag of the plasma electrons on the fast ions. This is modified in turn, when neoclassical
electron trapping effects are taken into account. The net neutral beam driven current
density is then,

3

1
( ) 1 1 ( , ) ( )b

NB eff fk
keff

ZJ G Z J
Z

ρ ε ρ
=

� �� �
� �= − −� �� 	

� �
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� (21)

where G is the trapped electron correction factor which has been calculated by Start and
Cordey [12] for all aspect ratios and is approximated here by the parametric fit derived by
Mikkelsen and Singer [10],

0.85 1.55( , ) 1.55 0.20eff
eff eff

G Z
Z Z

ε ε ε
� � � �

≈ + − +� � � �� � � �
� � � �

(22)
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where Rε ρ= , and the summation is over the three energy groups for positive ion

beamlines.  Once the net NB-driven current density is known, we can calculate the total
NB current NBI  by integrating Eq. (21) over the plasma cross section, and the current
drive efficiency NB NB NBI Pη =  in A/W.

A final note regarding the calculation of the pitch angle at the birth of the fast ion, bξ  that

appears in the expression for the fast ion current density: Although simple analytic
expressions for bξ  exist in the literature [5], they tend to be invalid for the inner flux
surfaces of the plasma. In the SUPERCODE Beams module, bξ  is explicitly evaluated

from:

( , ) ( , , )
( )

( , ) ( , , )

b
b b b b b b b

b b
b b b b b b b

RdR dZ J R Z h R Z
R

dR dZ J R Z h R Z

ρ
ξ ξ ρ

ρ

±

±
±

±

≡ =
� �

�
� �

(23)

This evaluation of bξ  using the above expression is very accurate as can be seen from

Figure 2, where the average pitch angle is plotted as a function of ��for different values of
the tangency radius tR  using three different methods for calculating bξ : The analytic
expression 0( )b tR Rξ ρ≈ +  [5], the expression given by Eq. 23 above, and using the

Monte Carlo beam deposition code NFREYA [13}. It can be seen that our calculation is
very close to the (accurate) result of NFREYA, while the analytic expression deviates for
small  ��
A few other fast ion quantities of interest are evaluated in the neutral beam  module of the
SUPERCODE:

Fast ion density:
The fast ion density is defined as,

1
2

0 1

( ) ( , )b bn dv d v f vρ ξ ξ
∞ +

−

= � � (24)

and is equal to ( ) ( )b f fn nρ ρ τ= �  where fτ  is the fast ion lifetime,

( )
( )

3

3

1
ln

3 1
b cs

f
thi c

v v
v v

ττ
� �+
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+� �� �

(25)

The electron density contribution from the fast ion population needed for quasineutrality
would then be equal to b bZ n .
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�

Figure 2: Average pitch angle for different tangency radii, evaluated with the analytic
formula (solid line), the NB module of the SUPERCODE (dotted line), and the NFREYA
code (dash line).

Fast ion pressure:
The fast ion pressure profile is useful for general MHD stability considerations as well as
to assess the possibility of excitation of Toroidal Alfvén Eigenmodes (TAE's) by any
super-Alfvénic beam ions. It is evaluated from its definition3,

1
4

0 1

( ) ( , )
3

b
b b

mp dv d v f vρ ξ ξ
∞ +

−

≡ � � (26)

Using the expression for the fast ion distribution function, we can express the fast ion
pressure in an analytic form [14],

2 2 2
1

2

( ) 2 1 2 11 1( ) ln tan
3 2 6 1 63 3

b c s f c c c c
b

c c

m v n x x x xp
x x

τ ρ πρ −� �� � � �+ + −� �= + − +� �	 
� � � �− +  �� � �� �

�

(27)

where cv  is the velocity corresponding to the critical energy for slowing down, and

c b cx v v≡ . Once the fast beam ion pressure profile is known, we can calculate the fast

beam ion beta from,
                                                
3Note that this definition incudes the dynamic pressure of the beam ions, since the fast ion distribution
function is anisotropic.
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2 1 ( ) ( )b b
p V

d V p
B V
µβ ρ ρ ρ′≡ � (28)

Fractional Power Deposition:
The fraction of the NB heating power (Eq. 15) that is deposited to the plasma electrons
and ions at each flux surface, is calculated by taking moments of the fast ion distribution
function (Eq. 17). The fraction of the power going to the plasma ions is given by,

( ) ( ) ( )

3
0 0

2
1

cx
c

i

E xf dx
E x

ρρ
ρ =

+� (29)

where Ec is the critical energy for slowing down, Eb is the initial fast ion energy, and
( ) ( )c b cx E Eρ ρ= . This integral can be calculated analytically to give [14]:

( )
2

1
2 2

2 1 2 12 1 1tan ln
6 6 13 3

c c c
i

c c c

x x xf
x x x

πρ −� �� �� �− + +� �= + −� �	 
� �� � − + �� �  �� �
(30)

The fraction of the NB power deposited into the electrons is then, 1e if f= − .

2.3. Beam-Target Interactions

As the fast beam ions slow down, they undergo fusion reactions with the background
plasma ions. These beam-target interactions contribute to the total fusion power as well to
the neutron production. The SUPERCODE Beams module can calculate the rates of several
such reactions, their fusion power, and the resulting DT and DD neutron rates. The
present version of the module includes contributions from 3( , )D d n He , ( , )D d p T ,

3 4( , )D He p He , and 4( , )D t n He  (if the relevant ion species are present in the plasma).

The formulation allows for injection of either D or He, and the inclusion of the 3He
reactions allows the study of 3D He−  operating scenarios.

The calculation of the reaction rates for each reaction takes explicitly into account the
slowing down distribution of the fast ions. It omits any contributions from beam-beam
reactions, and the thermal motion of the background ions is neglected. Therefore,

3( ) ( ) ( )i bRR n d v f v vρ σ= � v (31)

For the uniform field fast ion distribution function (Eq. 17), the reaction rate is equal to,
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The energy integral is evaluated numerically in the module. Expressions for the different
fusion cross sections ( )Eσ  involved, have been taken from the recent work by Hans-

Stephan Bosch at IPP [15]. They are valid in the (center of mass) energy range from 0.5
keV to 5 MeV. This wide range allows us to model systems with present-technology
neutral beams, up to next-generation devices with multi-MeV negative ion beams.

3. MODULE VERIFICATION

In this section we compare the predictions of the SUPERCODE neutral beam module with
calculations from more sophisticated (but slower) codes such as the Monte Carlo
deposition code NFREYA and the ACCOME neutral beam current drive code.

3.1. Comparisons with NFREYA4

NFREYA [13] is a Monte Carlo neutral beam deposition code widely used by the fusion
community to model NB injection in tokamak plasmas. It can take into account the exact
MHD flux surface  geometry of the plasma, and it can model a variety of injection
configurations and beam optics. For the purposes of the present comparison, the focal
length of the NFREYA beams is taken to be infinite while the angular beam divergence is
assumed to be zero. From the SUPERCODE part, the uniform power distribution option
within the beam cross section is used. Both codes use the same routines for the
calculation of the beam-stopping cross sections and share the same MHD geometry and
plasma profiles generated by the SUPERCODE.

 In Figure 3 the deposition profile, H(�), is shown as calculated with the SUPERCODE

Beams module and the NFREYA code, for a circular beam injected into an ITER plasma
with parameters characteristic of the CDA ignition regime. The same comparison is
repeated (Figure 4) using beams with rectangular cross section, like those of the ITER
Reference Design [8]. Uniform power distribution is assumed.

From Figures 3 and 4, it can be seen that the agreement between the NFREYA code and
the Beams module of the SUPERCODE is very good. Similar results have been obtained

                                                
4A similar comparison between FREYA (an older version of NFREYA for circular flux surfaces), and
HOFR ( a code based on the same model as our SUPERCODE module), has appeared before [16].
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Figure 3: Comparison of the deposition profile for a circular beam calculated with the
SUPERCODE (solid line) and NFREYA (dash line), for ITER CDA parameters.

Figure 4: Comparison of the deposition profiles for a rectangular beam calculated with
the SUPERCODE and NFREYA, for ITER CDA parameters.
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for different injection and plasma parameters. It should also be mentioned that the
execution time of NFREYA is at least an order of magnitude larger than that of our
simple module.

The results presented  above were for midplane injection with uniform power distribution
within the cross section of the beam. However according to the ITER CDA reference
neutral beam design [8], two of the three beamlines are injected at an angle above and
below the midplane.  Therefore, it is very important for the SUPERCODE Beams module to
be able to model this type of injection. This is accomplished by using the bi-Gaussian
power distribution (Eq. 11) with appropriate parameters for the vertical half-width Zσ ,
and the vertical position Zs. Figure 5 demonstrates the sensitivity of the deposition profile
to variations in the vertical position sZ  in Eq. 11 (keeping all the other relevant injection

parameters constant), for the  reference ITER CDA steady-state parameters.

So, it can be seen that the bi-Gaussian power distribution gives us enough flexibility to
model off-midplane injection for cases (like the ITER CDA) where the injection is
symmetric above and below the midplane. This approach has been used to benchmark our
module against NB current drive simulations performed with the ACCOME code for the
ITER CDA.

Figure 5: Sensitivity of the deposition profile to variations of the parameter Zs (vertical
position) of Eq. 11, for the reference ITER CDA steady-state parameters.
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3.2. Comparisons with ACCOME

The predictions of the neutral beam  module of the SUPERCODE have been compared with
calculations performed with the ACCOME code [17] for an ITER CDA steady state case
(actually case B6 in Ref. 18). To model the two beamlines that are  injected at a vertical
angle of  ± 9.88° above and below the midplane, the bi-Gaussian power distribution for
rectangular beams (Eq. 11) is used. The two beamlines are modeled as one rectangular
beam having a power equal to the sum of the powers of the two off-midplane injected
beams (49.2 MW). The horizontal and vertical half-widths and R Zσ σ  are taken equal to

the horizontal and vertical 1/e half-radii of the reference design [17] (0.41 and 0.85 m
respectively). The vertical position Zs is taken equal to 1.4 m, a value giving the best

agreement with the ACCOME deposition profile. The third beamline is lying on the
midplane, so no special adjustments are necessary. The relevant input parameters for the
SUPERCODE Beams module are summarized in the Table below:

Table 1: Input parameters for the SUPERCODE Beams module, used in the benchmark
with the ACCOME code for the Reference ITER CDA steady state scenario.

The results of the comparison are shown in Figure 6 where the net beam-driven current
density (from all three beamlines) as computed by the two codes, is plotted as a function
of the normalized poloidal flux. It can be seen that the agreement is quite good.

Beamline 1 2

Energy (keV) 1300 1300
Power (MW)  49.6 (2 × 24.6) 29.6
Tangency radius, tR  (m) 6.2 6.2
Width, w (m) 1.00 1.00
Height, h (m) 4.00 4.00

Rσ  (m) 0.41 0.41
Zσ  (m) 0.85 1.00

Zs  (m) 1.40 0.00
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Figure 6: Comparison of the NB-driven current density, as calculated by ACCOME
(solid line) and the SUPERCODE (dash line), for the reference ITER  CDA steady-state
scenario.

4. NUMERICAL CONSIDERATIONS

4.1. Numerical Methods

Since one of the most important considerations during the development of the neutral
beam module for the SUPERCODE was computational speed, it is appropriate to include a
brief description of the numerical methods used in the module. It is hoped that this
discussion of the numerical techniques (which are otherwise ordinary), will help if further
optimization of the module is desired, and will assist the user to make educated choices
when adjusting input parameters for speed/accuracy trade-offs.

The calculation of the deposition profile H(�) (Eq. 7) involves three integrations: A
double integration on the surface of the beam (variables ,b bR Z ) and  integrations along
the beam path for the evaluation of the two beam attenuation integrals 0 1 and D D .  In

addition, the solution of the nonlinear equation for the determination of � for a given R
(Eq. 6) is required for each point along the beam path during the evaluation of  

0 1 and D D .  Notice also that the integration along the beam path is inside the double
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integration on the surface of the beam.  A profiling of the code revealed that about 70%
of the total computational time is spent for the evaluation of the integrals 0 1 and D D .

Unfortunately the accuracy of the integration along the beam path is very important for
the overall accuracy of the profile calculation, since it is the only place where information
about the plasma parameters enters the computation through the mean free path �(�). One
may be tempted to make the assumption that �(�) is constant (not unreasonable, since the
effective stopping cross section is not a very sensitive function of the plasma parameters),
in which case 1/�(�) can be taken outside the integration and the integral in Eq. (5) can
be trivially calculated resulting to very significant savings on the total execution time.
However, it was found that the resulting deposition profile calculated this way can have
an error of more than 50%!

In the code, all these integrals are evaluated using standard Gaussian quadratures [19],
according to the rule,

2

1

( ) 1 ( )
2

b n

i i i
ia

b af x dx w t f x
=

−≈ −�� (31)

where,
(2 1), , and cos

2 2 2i i i i
b a b a iw x t t

n n
π π− + −= = + = (32)

The default number of nodes for the three integrals (nr = nz = 6, ns = 8) represents a
conservative choice (error less than 1%) and can be reduced to improve speed, at some
loss of accuracy.

For the solution of the nonlinear equation (6), an iterative method is used employing a
correlated search algorithm [20]. This calculation accounts for  about 50% of the total
execution time (this is the most often-called routine of the program, being inside the
innermost term in the triple integration for the evaluation of the deposition profile).

The calculations required for the evaluation of the different fast ion quantities (current,
fusion reaction rates, etc.) involve integrations in the velocity space for each � (basically,
the moments of the distribution function given by Eq. 17, as in Eqs. 19 and 30). These
integrals are calculated using an adaptive Simpson's rule [20].

Finally, the calculations for the global quantities (total current, shinethrough, beta, total
fusion powers, etc.) involve volume integrations that are performed using standard
Gaussian quadratures.
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4.2. Profiling of the code

A lot of insight can be gained regarding the numerical performance of a code if it is run
through a profiler. In particular, it can help us identify the parts of the code where most of
the execution time is spent. Fine-tuning these parts can result to large savings in the total
execution time. Below, the results from a profiling session of the neutral beam module of
the SUPERCODE are presented5.

 

PROFILING THE BEAMS MODULE

28%

28%

15%

14%
15%

HUNT
GETRHO
SINTEG
FRATE
OTHER

Figure 7: Percentage of the total execution time in the Beams module, for the top four
routines.  Only the time actually spent in the routine itself is taken into account, and not
in any routines or functions that are called from the routine.

Several interesting conclusions can be drawn from the results of the profiling session:
First, about 75% of the total execution time is spent in the calculation of the neutral beam
deposition profile H(�), and only 17.5% is spent in the evaluation of the fast ion
quantities. This may appear excessive, however one should recall that all of the fast ion
quantities depend on H(�)  in order to become profile-dependent. Most of the time for the
calculation of H(�) (about 71% of the total execution time) is actually spent calculating
the integrals  0 1 and D D   (Eq. 5). Although great effort has been made to make the

                                                
5Actually, a stand-alone version of the module was used for the profiling. Therefore, some of the execution
time included in the OTHER category involves activities not normally performed by the module when it is
running as part of the SUPERCODE (I/O, generation of plasma and MHD profiles, etc).
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routines that are involved in this part of the calculation (SINTEG, GETRHO, and HUNT)
as efficient as possible, some room for improvement may still exist.

For  the fast ion quantities, most of the time (14% of the total execution time) is spent
inside the routine FRATE that calculates the fusion cross sections for the beam-target
interactions. Since this routine evaluates the polynomial fits needed for the calculation of
the fusion  cross sections [15], not much can be done to increase its speed (at least if we
want to retain the wide range of validity and high accuracy of the present fits). However,
this routine is called during the velocity space integration, so any improvement in this
part of the calculation could reduce the computational time. Alternatively, the calculation
of the  beam target interactions can be turned off through input action if they are not
important for a particular simulation.

4.3. Cross-platform Benchmarks

A stand-alone version of the Beams module has been run in different hardware platforms
to give us a quantitative idea of the module's speed. They included a CRAY-2 computer
under UNICOS,  a SPARCstation 2 (the main platform for the SUPERCODE), and a 486
25 MHz PC using the MS FORTRAN 5.1 compiler. For the purposes of this comparison,
ten radial points were used and only one beamline. The results are shown in the graph
below.

CRAY-2 SUN 486 PC
0

0.4

0.8

1.2

1.6

CRAY-2 SUN 486 PC

Figure 8: Execution time (s) of the Beams module for three different platforms.

It appears that 0.4 seconds are needed for a complete neutral beam calculation with one
beamline, on the SPARCstation 2.
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5. CONCLUSIONS

A neutral beam module has been developed for the needs of the SUPERCODE, the new fast
1-1/2 dimensional systems code for the ITER EDA and other tokamak design projects.
The module can calculate self-consistently the profiles of most of the important NB-
related parameters, including heating profiles, NB driven current, fast ion pressure, and
fusion rates from beam-target interactions.

Although the module is computationally fast (0.4 seconds per run on a SPARCstation 2
workstation), very little sacrifice has been made in the accuracy of its physics models.
Comparison of its predictions with results from more sophisticated codes reveals
excellent agreement.

The neutral beam module allows us to use the SUPERCODE with confidence, for
parametric systems  studies of scenarios involving NB heating and current drive.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy, under contract No. DE-
FG05-91ER54122.



22

REFERENCES

1 S. W. Haney, et al. A "SuperCode" for Performing Systems Analysis of Tokamak
Experiments, to be presented at the ANS meeting, 1992.

2 G.G Lister, D.E Post, and R. Goldston, "Computer Simulation of Neutral Beam
Injection into Tokamaks Using Monte Carlo Techniques," Third Symposium on
Plasma Heating in Toroidal Devices, Varenna, Italy (1976) 303.

3 J. A. Rome, J.D. Callen, and J.F. Clarke, "Neutral Beam Injection into a
Tokamak: Fast Ion Spatial Distribution for Tangential Injection," Nucl. Fusion 14,
141 (1974).

4 S.E. Attenberger, W.A. Houlberg, and S.P. Hirshman, "Some Practical
Considerations Involving Spectral Representations of 3D Plasma Equilibria,"
Journal of Comp. Phys. 72, 435 (1987).

5 H.C. Howe, Physics Models in the Tokamak Transport Code PROCTR, Oak
Ridge National Laboratory Report ORNL/TM-9537, (1985).

6 R.K. Janev, C.D. Boley, and D.E. Post, "Penetration of Energetic Neutral Beams
into Fusion Plasmas," Nucl. Fusion 29, 2125 (1989).

7 C.D. Boley, private communication, 1989.

8 V. Parail, et al., ITER Current Drive and Heating System, ITER Documentation
Series, No. 32, IAEA, Vienna 1991.

9 J.D. Gaffey, "Energetic Ion Distribution Resulting from Neutral Beam Injection in
Tokamaks," J. Plasma Physics 16, 149 (1976).

10 D.R. Mikkelsen, and C.E. Singer, "Optimization of Steady-State Beam-Driven
Tokamaks of Arbitrary Aspect Ratio," Nuclear Technology/Fusion 4 237 (1983).

11 D.L. Book, NRL Plasma Formulary, Washington, DC 1990.

12 D.F.H. Start, and J.G. Cordey, "Beam-induced Currents in Toroidal Plasmas of
Arbitrary Aspect Ratio," Phys. Fluids 23, 1477 (1980).

13 R.H. Fowler, J.A. Holmes, and J. A. Rome, NFREYA - A Monte Carlo Beam
Deposition Code for Noncircular Tokamak Plasmas, Oak Ridge National
Laboratory Report ORNL/TM-6845, (1979).

14 B.Q. Deng and G.A. Emmert, Fast Ion Pressure in Fusion Plasmas, UWFDM-
718 (1987).



23

15 H.S. Bosch, "Review of Data and Formulas for Fusion Cross-sections," Max-
Planck-Institut für Plasmaphysik Report, IPP I/252, September 1990.

16 R.M. Wieland, W.A. Houlberg, and A.T. Mense, A Comparison of Beam
Deposition for Three Neutral Beam Injection Codes, Oak Ridge National
Laboratory Report ORNL/TM-6550, (1979).

17 M.E. Fenstermacher, private communication, 1991.

18 D.E. Post, J. Wesley, L.J. Perkins, and J.D. Galambos, ITER Operation Scenarios,
ITER/US/91/PC-06-2

19 M. Abramowitz, and I. A. Stegun, Handbook of Mathematical Functions, NY
(1970).

20 W.H. Press, et al., Numerical Recipes, Cambridge (1986).




	1.	INTRODUCTION
	2.	PHYSICAL MODELS
	2.1.	Deposition Profiles
	Beam shinethrough

	2.2.	Heating and Current Drive
	Fractional Power Deposition:
	2.3.	Beam-Target Interactions

	3.	MODULE VERIFICATION
	3.1.	Comparisons with NFREYA
	3.2.	Comparisons with ACCOME

	4.	NUMERICAL CONSIDERATIONS
	4.1.	Numerical Methods
	4.3.	Cross-platform Benchmarks

	5.	CONCLUSIONS

