High-Accuracy, Implicit Solution of the Extended-MHD Equations using High-Continuity Finite Elements

Stephen C. Jardin

In collaboration with the M3D group and the SciDAC Center for Extended MHD Modeling

Princeton University Plasma Physics Laboratory

Nov 18, 2004 APS, DPP Meeting Savannah, GA

The Center for Extended Magnetohydrodynamic Modeling

(Global Stability of Magnetic Fusion Devices)

S. Jardin—lead PI

MIT: D. Brennan, L. Sugiyama, J. Ramos

NYU: B. Hientzsch, H. Strauss

- PPPL: J. Breslau, J. Chen, G. Fu, S. Klasky, <u>W. Park, R. Samtaney</u>
- SAIC: <u>D. Schnack</u>, A. Pankin

TechX*: S. Kruger

U. Colorado: <u>S. Parker</u>, D. Barnes

U. Utah: A. Sanderson

U.Wisconsin: J. Callen, C. Hegna, C. Sovinec, C. Kim

Utah State: E. Held

a SciDAC activity... Partners with: TOPS TSTT APDEC Considerations for a next-generation nonlinear MHD code for Magnetic Fusion Applications i.e.: what have we learned?

- 2-fluid terms (Extended MHD) are essential to model real fusion experiments...but best form is uncertain
- Highly implicit treatment is needed to address long timescales
- There are advantages to using the potential/stream function form of the vector fields...avoids spec. pol.+ low order subsets
- High-order (4th or more) finite elements are essential for describing highly anisotropic heat conduction.
- Direct sparse matrix inversions (vs iterative solvers) in the poloidal plane can be very efficient for the MHD system
- It is advantageous to have a fast linear option to scope runs
- Boundary conditions should be applied at infinity, but we need the capability to model a nearby resistive conducting structure

Our center is comparing 5+ different Extended-MHD models and

need to be able to change models without major code restructuring

Model	Momentum Equation	Ohm's law	Whist- lers ¹	KAW ²	GV ³	Slow dynamics ⁴
General	$ \begin{aligned} & mn\frac{d\mathbf{V}}{dt} = -\nabla(p_e + p_i) \\ & +\mathbf{J} \times \mathbf{B} - \nabla \cdot (\Pi_{\parallel e} + \Pi_{\parallel i}) - \nabla \cdot \Pi_i^{gv} \end{aligned} $	$\mathbf{E} = -\mathbf{V} \times \mathbf{B} + \eta \mathbf{J} + \frac{1}{ne} \left(\mathbf{J} \times \mathbf{B} - \nabla p_e - \nabla \cdot \Pi_{\parallel e} \right)$	Yes	Yes	Yes	Either
Generalized Hall MHD ⁵	$ mn \frac{d\mathbf{V}}{dt} = -\nabla(p_e + p_i) $ + $\mathbf{J} \times \mathbf{B} - \nabla \cdot (\Pi_{\parallel e} + \Pi_{\parallel i}) $	$\mathbf{E} = -\mathbf{V} \times \mathbf{B} + \eta \mathbf{J} \\ + \frac{1}{ne} \left(\mathbf{J} \times \mathbf{B} - \nabla p_e - \nabla \cdot \Pi_{\parallel e} \right)$	Yes	Yes	No	No
Neoclassical- MHD	$mn\frac{d\mathbf{V}}{dt} = -\nabla(p_e + p_i)$ $+\mathbf{J} \times \mathbf{B} - \nabla \cdot (\Pi_{\parallel e} + \Pi_{\parallel i}) - \nabla \cdot \Pi_i^{gv}$	$\mathbf{E} = -\mathbf{V} \times \mathbf{B} + \eta \mathbf{J} - \frac{1}{ne} \nabla \cdot \Pi_{\parallel e}$	No	No	Yes	Yes
Generalized resistive MHD ⁵	$mn\frac{d\mathbf{V}}{dt} = -\nabla p + \mathbf{J} \times \mathbf{B} - \nabla \cdot \Pi_{\parallel}$	$\mathbf{E} = -\mathbf{V} \times \mathbf{B} + \eta \mathbf{J}$	No	No	No	No
Generalized drift ⁶	$mn\frac{d\mathbf{V}}{dt} = -mn\mathbf{V}_{di} \cdot \nabla \mathbf{V}_{\perp} + \upsilon_{gv}$ $+ nm\mu\nabla_{\perp}^{2}\mathbf{V} - \nabla \cdot (\Pi_{\parallel e} + \Pi_{\parallel i})$ $-\nabla (p_{e} + p_{i}) + \mathbf{J} \times \mathbf{B}$	$\mathbf{E} = -\mathbf{V} \times \mathbf{B} + \eta \mathbf{J}^* \\ -\frac{1}{ne} \Big[\nabla_{\parallel} p_e + \nabla \cdot \Pi_{\parallel e} \Big]$	No	Yes	Yes	Yes

All the MHD models beyond resistive MHD contain dispersive waves

Resistive MHD

757

$$mn \frac{d\mathbf{v}}{dt} = -\nabla(p_e + p_i) + \mathbf{J} \times \mathbf{B} - \nabla \cdot (\Pi_{\parallel e} + \Pi_{\parallel i}) - \nabla \cdot \Pi_i^{gv} \qquad \text{Off-diagonal stress tensor terms lead to} \\ \frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E} , \qquad \mathbf{E} = -\mathbf{V} \times \mathbf{B} + \eta \mathbf{J} + \frac{1}{ne} (\mathbf{J} \times \mathbf{B} - \nabla p_e - \nabla \cdot \Pi_{\parallel e}) \qquad \text{waves} \\ \text{All these new} \\ \text{"Extended MHD"} \\ \text{waves have} \\ \text{similar structure} \qquad \text{Hall term leads to} \\ \text{Whistler wave} \qquad \text{Pressure gradient} \\ \text{terms lead to Kinetic} \\ \text{Alfven wave} \end{cases}$$

$$\frac{\partial^2 \mathbf{B}}{\partial t^2} = -\left(\frac{V_A^2}{\Omega}\right)^2 \left(\mathbf{b} \cdot \nabla\right)^2 \nabla^2 \mathbf{B}$$
Note 4th spatial

derivatives

Limiting form gives wave-like equation where wave speed is inversely proportional to wavelength:

i.e.
$$\frac{\omega}{k} \sim k$$

Need viable implicit techniques for these 4th order (in space) equations to provide numerical stability for large timesteps.

Highly anisotropic heat conduction requires accurate spatial representation and implicit time differencing

$$\frac{\partial T}{\partial t} = \nabla \bullet \left[\kappa_{\parallel} \frac{\vec{B}\vec{B}}{B^2} \bullet \nabla T \right] + \nabla \bullet \kappa \nabla T + S$$

In a highly magnetized fusion plasma, $\kappa_{\parallel} >> \kappa$

- Low-order finite difference methods are not adequate
- AMR based on rectangles (or cubes) is probably not the most efficient approach
- Two approaches have been shown to be viable:
 - High order finite elements: $C^0 vs C^1$
 - Field aligned coordinates
- Similar considerations for anisotropy in mass diffusion and wave propagation

Approach

- Use high-order, *high-continuity* triangular finite elements in poloidal plane, spectral in the toroidal direction
- The compactness and high-continuity of this representation makes a full *implicit* solution practical: including whistler, gyroviscous, and kinetic Alfvén waves

Divide domain into triangular regions: represent solution as a quintic polynomial within each region

Error ~ h^5 (since complete Taylor series through h^4)

*C*¹ continuity allows treatment of 4th spatial derivatives (*Galerkin Method*) Most compact representation for this accuracy "reduced quintic"

 m_1

 $\frac{n_k}{0}$

 $a_i = g_{ij} \Phi_j$

The Trial Functions:

These are the trial functions. There are 18 for each triangle.

 $v_j = \sum_{i=1}^{m} \xi^{m_i} \eta^{n_i} g_{ij}$

The 6 shown here correspond to one node, and vanish at the other nodes, along with their derivatives

Each of the six has value 1 for the function or one of it's derivatives at the node, zero for the others.

Note that the function and it's derivatives (through 2nd) play the role of the amplitudes

Comparison with a popular C^0 Element

Lagrange Cubic: C⁰, h⁴

9 new unknowns: 2 new triangles

 $9/2 = 4^{1/2}$ unknowns/ triangle

Reduced Quintic: C^1 , h^5

6 new unknowns: 2 new triangles

6/2 = 3 unknowns/ triangle

Comparison of reduced quintic to other popular triangular elements

	Vertex nodes	Line nodes	Interior nodes	accuracy order h ^p	Unknowns per triangle	continuity
linear element	3	0	0	2	1/2	C^0
Lagrange quadratic	3	3	0	3	2	C^0
Lagrange cubic	3	6	1	4	41/2	C^0
Lagrange quartic	3	9	3	5	8	C^0
reduced quintic	18	0	0	5	3	<i>C</i> ¹

The "reduced quintic" is the most compact representation of an element of this order of accuracy (fewest unknowns/triangle)

- and -

It's C^1 continuity property allows it to represent spatial derivatives up to 4th order without introducing auxiliary variables

=> Smaller matrices to invert

Anisotropic Diffusion

N..number of points per side

N⁻⁵

60

40

2D Incompressible MHD

$$\frac{\partial}{\partial t} \nabla^2 \phi + \left[\nabla^2 \phi, \phi \right] - \left[\nabla^2 \psi, \psi \right] = \mu \nabla^4 \phi$$

$$\frac{\partial}{\partial t} \psi = \eta \nabla^2 \psi$$
note:
$$\frac{\partial}{\partial t} \psi = \eta \nabla^2 \psi$$

$$\frac{\partial}{\partial t} = \eta \nabla^2 \psi$$

 $\begin{array}{l} \theta \text{-centering....Taylor expand in time (centered about n+1/2 for $\theta=0.5$)} \\ \nabla^2 \dot{\phi} + \left[\nabla^2 \phi^n + \theta \delta t \nabla^2 \dot{\phi}, \phi^n + \theta \delta t \dot{\phi} \right] - \left[\nabla^2 \psi^n + \theta \delta t \nabla^2 \dot{\psi}, \psi + \theta \delta t \dot{\psi} \right] = \mu \left[\nabla^4 \phi + \theta \delta t \nabla^4 \dot{\phi} \right] \\ \dot{\psi} + \left[\psi^n + \theta \delta t \dot{\psi}, \phi + \theta \delta t \dot{\phi} \right] = \eta \left[\nabla^2 \psi^n + \theta \delta t \nabla^2 \dot{\psi} \right] \end{array}$

Multiply out non-linear terms, neglecting terms ~ $(\delta t)^2$. Finite difference in time:

$$\dot{\phi} = rac{\phi^{n+1} - \phi^n}{\delta t}, \qquad \dot{\psi} = rac{\psi^{n+1} - \psi^n}{\delta t}$$

Move all terms at time level (n+1) to left of equal sign. Expand in trial functions. Multiply equations by each trial function and integrate over space. Integrate by parts as needed. *(Galerkin Method)*

$$\phi^n = \sum_{j=1}^{18} v_j \Phi_j^n \qquad \psi^n = \sum_{j=1}^{18} v_j \Psi_j^n$$

Leads to the Matrix Implicit System

step.

and

are

Each spatial operator becomes a submatrix

Tilting of a Plasma Column

Initial Condition:

$$\psi = \begin{cases} [2/kJ_0(k)]J_1(kr)\cos\theta, & r < 1\\ (r-1/r)\cos\theta, & r > 1 \end{cases}$$
$$J_1(k) = 0$$

Give small perturbation and evolve in time

Stream function and vorticity at final time

Flux (top) and current (bottom) at initial and final times

Tilting of a Plasma Column-cont

Converged (in time) growth rate the same for N=30,40 out to 6 decimal places Calculation stopped each time when energy error reached 1%.

Higher order formulation

By further manipulation, it is possible to get a 4th order (in space) PDE for Φ^{n+1} that is independent of Ψ^{n+1}

$$\begin{bmatrix} S'^{11}_{j} & 0 \\ S^{21}_{j} & S^{22}_{j} \end{bmatrix} \begin{bmatrix} \Phi^{n+1}_{j} \\ \Psi^{n+1}_{j} \end{bmatrix} = \begin{bmatrix} D'^{11}_{j} & D'^{12}_{j} \\ D^{21}_{j} & D^{22}_{j} \end{bmatrix} \begin{bmatrix} \Phi^{n}_{j} \\ \Psi^{n}_{j} \end{bmatrix}$$

Note: S'^{11}_{j} now is a 4th order operator: contains all the linear Ideal MHD (Alfven wave) response

Instead of inverting full S matrix, invert two sub-matrices sequentially. Gives same results in $1/8^{\text{th}} - 1/4^{\text{th}}$ the time

$$S_{j}^{\prime 11} \Phi_{j}^{n+1} = D_{j}^{\prime 11} \Phi_{j}^{n} + D_{j}^{\prime 12} \Psi_{j}^{n}$$

$$S_{j}^{22}\Psi_{j}^{n+1} = -S_{j}^{21}\Phi_{j}^{n+1} + D_{j}^{21}\Phi_{j}^{n} + D_{j}^{22}\Psi_{j}^{n}$$

M3D-*C1* code has full Extended MHD equations expressed in a form that allows non-trivial subsets of lower rank equations:

$$\begin{bmatrix} S_{11}^{\nu} & S_{12}^{\nu} & S_{13}^{\nu} \\ S_{21}^{\nu} & S_{22}^{\nu} & S_{23}^{\nu} \\ S_{31}^{\nu} & S_{32}^{\nu} & S_{33}^{\nu} \end{bmatrix} \bullet \begin{bmatrix} \phi \\ V_z \\ \chi \end{bmatrix}^{n+1} = \begin{bmatrix} D_{11}^{\nu} & D_{12}^{\nu} & D_{13}^{\nu} \\ D_{21}^{\nu} & D_{22}^{\nu} & D_{23}^{\nu} \\ D_{31}^{\nu} & D_{32}^{\nu} & D_{33}^{\nu} \end{bmatrix} \bullet \begin{bmatrix} \phi \\ V_z \\ \chi \end{bmatrix}^n + \begin{bmatrix} R_{11}^{\nu} & R_{12}^{\nu} & R_{13}^{\nu} \\ R_{21}^{\nu} & R_{22}^{\nu} & R_{23}^{\nu} \\ R_{31}^{\nu} & R_{32}^{\nu} & R_{33}^{\nu} \end{bmatrix} \bullet \begin{bmatrix} \psi \\ I \\ T_e \end{bmatrix}^n$$

$$\begin{bmatrix} \mathbf{S}_{11}^{p} & \mathbf{S}_{12}^{p} & \mathbf{S}_{13}^{p} \\ \mathbf{S}_{21}^{p} & \mathbf{S}_{22}^{p} & \mathbf{S}_{23}^{p} \\ \mathbf{S}_{31}^{p} & \mathbf{S}_{32}^{p} & \mathbf{S}_{33}^{p} \end{bmatrix} \bullet \begin{bmatrix} \boldsymbol{\psi} \\ \mathbf{I} \\ T_{e} \end{bmatrix}^{n+1} = \begin{bmatrix} \mathbf{D}_{11}^{p} & \mathbf{D}_{12}^{p} & \mathbf{D}_{13}^{p} \\ \mathbf{D}_{21}^{p} & \mathbf{D}_{22}^{p} & \mathbf{D}_{23}^{p} \\ \mathbf{D}_{31}^{p} & \mathbf{D}_{32}^{p} & \mathbf{D}_{33}^{p} \end{bmatrix} \bullet \begin{bmatrix} \boldsymbol{\psi} \\ \mathbf{I} \\ T_{e} \end{bmatrix}^{n} + \begin{bmatrix} \mathbf{R}_{11}^{p} & \mathbf{R}_{12}^{p} & \mathbf{R}_{13}^{p} \\ \mathbf{R}_{21}^{p} & \mathbf{R}_{22}^{p} & \mathbf{R}_{23}^{p} \\ \mathbf{R}_{31}^{p} & \mathbf{R}_{32}^{p} & \mathbf{R}_{33}^{p} \end{bmatrix} \bullet \begin{bmatrix} \boldsymbol{\phi} \\ V_{z} \\ \boldsymbol{\chi} \end{bmatrix}^{n+1} + \begin{bmatrix} \mathbf{Q}_{11}^{p} & \mathbf{Q}_{12}^{p} & \mathbf{Q}_{13}^{p} \\ \mathbf{Q}_{21}^{p} & \mathbf{Q}_{22}^{p} & \mathbf{Q}_{23}^{p} \\ \mathbf{Q}_{31}^{p} & \mathbf{Q}_{32}^{p} & \mathbf{Q}_{33}^{p} \end{bmatrix} \bullet \begin{bmatrix} \boldsymbol{\phi} \\ V_{z} \\ \boldsymbol{\chi} \end{bmatrix}^{n}$$

Phase-I: Resistive MHD:

Phase-II: Fitzpatrick-Porcelli 4-field model:

$$\frac{\partial}{\partial t} \nabla^2 \phi + \left[\nabla^2 \phi, \phi \right] - \left[\nabla^2 \psi, \psi \right] = \mu \nabla^4 \phi$$
$$\frac{\partial \psi}{\partial t} + \left[\psi, \phi \right] = \eta \nabla^2 \psi$$

Tilting spheromak in 2-field (left) and 4-field (right) models.

Poloidal Magnetic Flux

Toroidal Current Density

Toroidal Magnetic Field

Toroidal Velocity

4-field (2-fluid) model predicts that growth rate of tilt mode increases linearly with the square of the ion skin depth d_i

Poloidal Magnetic Flux

Toroidal Current Density

Toroidal Magnetic Field

Toroidal Velocity

Comparison of GEM reconnection with 2-field and 4-field models

4-field (2-fluid) equations with di=1 show much greater reconnection rate that 2-field (reduced MHD) description

The 2D cylindrical two-fluid MHD equations and definition of the variables.

$$\begin{split} \frac{\partial \vec{B}}{\partial t} &= -\nabla \times \vec{E} \\ \vec{E} + \vec{V} \times \vec{B} &= \eta \vec{J} + \frac{1}{ne} \left(\vec{J} \times \vec{B} - \nabla p_e \right) \\ \mu_0 \vec{J} &= \nabla \times \vec{B} \\ nM_i \left(\frac{\partial \vec{V}}{\partial t} + \vec{V} \bullet \nabla \vec{V} \right) + \nabla p &= \vec{J} \times \vec{B} - \nabla \cdot \vec{\Pi}_i^{gv} + \mu n \nabla \cdot \left[\nabla \vec{V} + \nabla \vec{V}^\dagger \right] \\ \frac{\partial n}{\partial t} + \nabla \bullet \left(n \vec{V} \right) &= 0 \\ \frac{3}{2} \frac{\partial p_e}{\partial t} + \nabla \cdot \left(\frac{3}{2} p_e \vec{V}_i \right) &= -p_e \nabla \cdot \vec{V}_i + \frac{\vec{J}}{ne} \cdot \left[\frac{3}{2} \nabla p_e - \frac{5}{2} \frac{p_e}{n} \nabla n + \vec{R} \right] - \nabla \cdot \vec{q}_e - Q_\Delta \\ \frac{3}{2} \frac{\partial p_i}{\partial t} + \nabla \cdot \left(\frac{3}{2} p_i \vec{V}_i \right) &= -p_i \nabla \cdot \vec{V}_i - \Pi_i : \nabla V_i + \nabla (\mu n \vec{V}) : \left[\nabla \vec{V} + \nabla \vec{V}^\dagger \right] - \nabla \cdot \vec{q}_i + Q_A \\ \frac{3}{2} \frac{\partial p}{\partial t} + \nabla \cdot \left(\frac{3}{2} p \vec{V} \right) &= -p \nabla \cdot V - \Pi_i : \nabla V_i + \nabla (\mu n \vec{V}) : \left[\nabla \vec{V} + \nabla \vec{V}^\dagger \right] - \nabla \cdot (\vec{q}_i + \vec{q}_e) \\ &+ \frac{\vec{J}}{ne} \cdot \left[\frac{3}{2} \nabla p_e - \frac{5}{2} \frac{p_e}{n} \nabla n + \vec{R} \right] \end{split}$$

Numerical stability analysis for 2-fluid equations shows sequential inversion method leads to stability for arbitrary timestep

Summary

- Major upgrade to the M3D code is being explored--based on quintic C^1 finite elements
- Primary motivation is to allow efficient, high order, implicit solution of extended MHD equations with whister and KAW
- Staged implementation using reduced sets of equations with 2, 4, and then 6 variables
- Initial results look promising!

