
High-Accuracy, Implicit Solution of the 
Extended-MHD Equations using High-

Continuity Finite Elements

Stephen C. Jardin

In collaboration with 
the M3D group 

and the 
SciDAC Center for Extended MHD Modeling

Princeton University
Plasma Physics Laboratory

Nov 18, 2004
APS, DPP Meeting

Savannah, GA



The Center for Extended 
Magnetohydrodynamic Modeling

(Global Stability of Magnetic Fusion Devices) 
S. Jardin—lead PI

MIT: D. Brennan,  L. Sugiyama, J. Ramos
NYU: B. Hientzsch, H. Strauss
PPPL: J. Breslau, J. Chen, G. Fu, S. Klasky, W. Park, R. Samtaney
SAIC: D. Schnack, A. Pankin
TechX*: S. Kruger
U. Colorado: S. Parker , D. Barnes
U. Utah: A. Sanderson
U.Wisconsin: J. Callen, C. Hegna, C. Sovinec, C. Kim
Utah State: E. Held

a SciDAC activity…
Partners with:
TOPS
TSTT
APDEC



Considerations for a next-generation nonlinear MHD 
code for  Magnetic Fusion Applications

i.e.: what have we learned?

• 2-fluid terms (Extended MHD) are essential to model real 
fusion experiments…but best form is uncertain

• Highly implicit treatment is needed to address long timescales
• There are advantages to using the potential/stream function 

form of the vector fields…avoids spec. pol.+ low order subsets
• High-order (4th or more) finite elements are essential for 

describing highly anisotropic heat conduction.
• Direct sparse matrix inversions (vs iterative solvers) in the 

poloidal plane can be very efficient for the MHD system
• It is advantageous to have a fast linear option to scope runs
• Boundary conditions should be applied at infinity, but we need 

the capability to model a nearby resistive conducting structure



Model Momentum Equation Ohm’s law Whist-
lers1

KAW2 GV3 Slow 
dynamics4

General Yes Yes Yes Either

Generalized 
Hall MHD5 Yes Yes No No

Neoclassical-
MHD

No No Yes Yes

Generalized 
resistive 
MHD5

No No No No

Generalized 
drift6 No Yes Yes Yes

Our center is comparing 5+ different Extended-MHD models and 
need to be able to change models without major code restructuring
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All the MHD models beyond resistive MHD 
contain dispersive wavesResistive MHDExtended MHD
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Hall term leads to 
Whistler wave

Pressure gradient 
terms lead to Kinetic 
Alfven wave
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Limiting form gives wave-like 
equation where wave speed 
is inversely proportional to 
wavelength:  

i.e.   k
k
ω ∼Note 4th spatial 

derivatives

Need viable implicit 
techniques for these 
4th order (in space) 
equations to provide 
numerical stability 
for large timesteps.
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Off-diagonal 
stress tensor 
terms lead to 
gyro-viscous 
waves

All these new 
“Extended MHD”
waves have 
similar structure



Highly anisotropic heat conduction requires accurate spatial 
representation and implicit time differencing
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In a highly magnetized fusion plasma, κ κ>>

• Low-order finite difference methods are not adequate

• AMR based on rectangles (or cubes) is probably not the 
most efficient approach

• Two approaches have been shown to be viable:

• High order finite elements:  C0 vs C1

• Field aligned coordinates

• Similar considerations for anisotropy in mass diffusion 
and wave propagation



Approach

• Use high-order, high-continuity triangular 
finite elements in poloidal plane, spectral in 
the toroidal direction

• The compactness and high-continuity of this 
representation makes a full implicit solution 
practical:  including whistler, gyroviscous, 
and kinetic Alfvén waves



Divide domain into triangular regions:   represent 
solution as a quintic polynomial within each region
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aφ ξ η ξ η
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= ∑ k mk nk
1 0 0
2 1 0
3 0 1
4 2 0
5 1 1
6 0 2
7 3 0
8 2 1
9 1 2
10 0 3
11 4 0
12 3 1
13 2 2
14 1 3
15 0 4
16 5 0
17 3 2
18 2 3
19 1 4
20 0 5
21 4 1

18 constraints to 
match the function and 
derivatives at nodes

+ 3 constraints on quintic
coefficients to enforce 

______ C1 continuity at edges 

21 coefficients of the 
quintic polynomial

x

y

The function and it’s first and 
second derivatives at the 3 nodes 
are the global unknowns (6 per 
node)    (φ, φx, φy, φxx, φxy, φyy)

general quintic has 21 terms. 
ξ,η are local 
orthogonal 
coordinates

Error ~ h5   (since complete Taylor series through h4)

C1 continuity allows treatment of 4th spatial derivatives (Galerkin Method)

Most compact representation for this accuracy  “reduced quintic”



ai = gij Φj The Trial Functions:
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These are the trial 
functions.  There are 
18 for each triangle.

The 6 shown here 
correspond to one 
node, and vanish at 
the other nodes, along 
with their derivatives

Each of the six has  
value 1 for the 
function or one of it’s 
derivatives at the 
node, zero for the 
others.

Note that the function and it’s derivatives (through 2nd)  play the role of the amplitudes



Comparison with a popular C0 Element
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6

6 new unknowns:  2 new triangles

6/2 = 3 unknowns/ triangle

9 new unknowns:  2 new triangles

9/2 = 41/2 unknowns/ triangle

split

split

Lagrange Cubic: C0, h4

6
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Reduced Quintic: C1, h5



Comparison of reduced quintic to other 
popular triangular elements

Vertex
nodes

Line 
nodes

Interior 
nodes

accuracy
order hp

Unknowns 
per triangle

continuity

linear element 3 0 0 2 ½ C0

Lagrange quadratic 3 3 0 3 2 C0

Lagrange cubic 3 6 1 4 4½ C0

Lagrange quartic 3 9 3 5 8 C0

reduced quintic 18 0 0 5 3 C1

The “reduced quintic” is the most compact representation of an 
element of this order of accuracy (fewest unknowns/triangle)

- and -

It’s C1 continuity property allows it to represent spatial 
derivatives up to 4th order without introducing auxiliary variables

=>  Smaller matrices to invert



Anisotropic Diffusion
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Shows greater than N-5 convergence
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2D Incompressible MHD
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θ-centering….Taylor expand in time (centered about n+1/2 for θ=0.5)

Multiply out non-linear terms, neglecting terms ~ (δt)2.  Finite difference in time:
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,
n n n n

t t
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δ δ

+ +− −
= =

Move all terms at time level (n+1) to left of equal sign.  Expand in trial functions. 
Multiply equations by each trial  function and integrate over space.  Integrate by 
parts as needed.  (Galerkin Method)
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Leads to the Matrix Implicit System
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Solve each time 
step using 
SuperLU direct 
solver

For linear 
problem, only 
need to form LU 
decomposition 
once and do a 
back-substitution 
each time step.

Note that stream 
function and 
vorticity are 
solved together

unknown 
at time n+1

unknown 
at time n

Block-Sparse 
coefficient matrices

Each spatial operator becomes a submatrix



Tilting of a Plasma Column

Initial Condition:
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Give small perturbation and 
evolve in time

Stream function and 
vorticity at final time

Flux (top) and current (bottom) 
at initial and final times



Tilting of a Plasma Column-cont

Converged (in time) growth 
rate the same for N=30,40 out 
to 6 decimal places

Calculation stopped each time 
when energy error reached 1%.



Higher order formulation
By further manipulation, it is possible to get a 4th order 
(in space) PDE for Φn+1 that is independent of Ψn+1

Note:  
now is 

a  4th order 
operator:  
contains all 
the linear 
Ideal MHD 
(Alfven 
wave) 
response

Instead of inverting full S matrix, invert 
two sub-matrices sequentially.  Gives 
same results in 1/8th – 1/4th the time
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M3D-C1 code has full Extended MHD equations expressed in a 
form that allows non-trivial subsets of lower rank equations:
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Phase-I:  Resistive MHD:  Phase-II:  Fitzpatrick-Porcelli 4-field model: 
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square of the ion skin depth:  di
2
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Comparison of GEM reconnection with 2-field and 4-field models
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The 2D cylindrical two-fluid MHD equations and definition of the variables.
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Numerical stability analysis for 2-fluid equations shows sequential 
inverstion method leads to stability for arbitrary timestep
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Summary
• Major upgrade to the M3D code is being 

explored--based on quintic C1 finite elements
• Primary motivation is to allow efficient, high 

order, implicit solution of extended MHD 
equations with whister and KAW

• Staged implementation using reduced sets of 
equations with 2, 4, and then 6 variables

• Initial results look promising!
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