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Nonlocal effects critical for getting correct ��� .

Generalized �� addresses nonlocal

�

perturbations for robust flattening.
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Diffusive �� addresses local gradient only getting wrong sign and magnitude.
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Nonlocal effects critical for getting correct ��� .

Overlapping magnetic perturbations lead to field line chaos which emphasizes

nonlocal effects of �� closure.
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Analogous nonlocal �� exists for sheared slab geometry
��

.
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10 E. D. Held, Generalized form for parallel ion viscous stress in magnetized plasmas, to be published in Phys. Plasmas

(2003).
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Implement �� using massively parallel approach.

NIMROD code

� �

uses finite elements in poloidal plane and Fourier
decomposition in toroidal angle.

Bi-quartic finite elements on 32 X 32 grid with

�

toroidal modes requires � � � �

�� calculations � hundreds of processors.

11 C. R. Sovinec, et al., Nonlinear Magnetohydrodynamics Simulation using High-Order Finite Elements, accepted in J. Comp.
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Avoid time step limitation by using semi-implicit advance for .

Easily inverted anisotropic heat diffusion operator stabilizes

�

advance:
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Minimum value of centering parameter,

�

, exists such that advance is stable
for any time step,

��
.
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Avoid time step limitation by using semi-implicit advance for .

Test semi-implicit time advance in frozen slab island geometry.

applied

heat
flow

�

Nonlocal Closures for Plasma Fluid Simulations – p.5/12



Avoid time step limitation by using semi-implicit advance for .

Significant flattening across O-point with

� � 
 � keV and

�� 
 �  � ms.
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Avoid time step limitation by using semi-implicit advance for .

�

evolution converges as

��

is reduced.
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Combination of generalized closure theory and massively parallel numerics

permits simulation of parallel particle dynamics on fluid time scales.
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Apply �� to study heat flow dynamics in tokamaks.

Evolve

�

in frozen geometry to determine island width when

�

contours begin
to coincide with flux surfaces, i.e., when

�

flattens across island O-point.
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Apply �� to study heat flow dynamics in tokamaks.

Evolve

�

in frozen geometry to determine island width when

�

contours begin
to coincide with flux surfaces, i.e., when

�

flattens across island O-point.
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Apply �� to study heat flow dynamics in tokamaks.

Evolve

�

in frozen geometry to determine island width when

�

contours begin
to coincide with flux surfaces, i.e., when

�

flattens across island O-point.
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Large � � � ��� needed for flattening with diffusive �� .
Cylindrical, diffusive analytical scaling

�
 � � � �� � � � �
	 �� .

Toroidal, diffusive numerical scaling

�� � � � �� � � � �
	
� .
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12 R. Fitzpatrick, Phys. Plasmas 2, 825 (1994).

13 C. R. Sovinec, T. A. Gianakon, E. D. Held, S. E. Kruger and D. D. Schnack, Phys. Plasmas 10, 1727 (2003).
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Generalized �� predicts more robust flattening.

Cylindrical, diffusive analytical scaling with

�
 � � � � � �


,

� � � � � 	 �� .

Toroidal, diffusive numerical scaling

�� � � � � � 	 �� .

Generalized numerical scaling

� � � � � 	 �� .
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12 R. Fitzpatrick, Phys. Plasmas 2, 825 (1994).

13 C. R. Sovinec, T. A. Gianakon, E. D. Held, S. E. Kruger and D. D. Schnack, Phys. Plasmas 10, 1727 (2003).
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Nonlocal �� useful in disruption simulations.

Simulation of disruption in DIII-D shot 87009

� �

results in field line chaos.
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14 J. D. Callen, et al., Phys. Plasmas 6, 2963 (1999). Nonlocal Closures for Plasma Fluid Simulations – p.9/12



Nonlocal closure qualitatively different than diffusive closure.
Heat flows rapidly along field lines hitting the wall.
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Conclusion

Developed nonlocal closures that encompass Landau, collisional, and particle
trapping physics in general toroidal geometry.

Implemented massively parallel semi-implicit approach in NIMROD code for
application to high-performance, toroidal fusion experiments.

Combination of generalized closure theory and massively parallel numerics

permits simulation of parallel particle dynamics on fluid time scales.

Scaling of

� � � � � 	 �� for nonlocal �� predicts robust flattening of temperature
across magnetic islands.

Preliminary application of nonlocal � � in disruption simulations reproduces
qualitative features of wall heat loads.
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