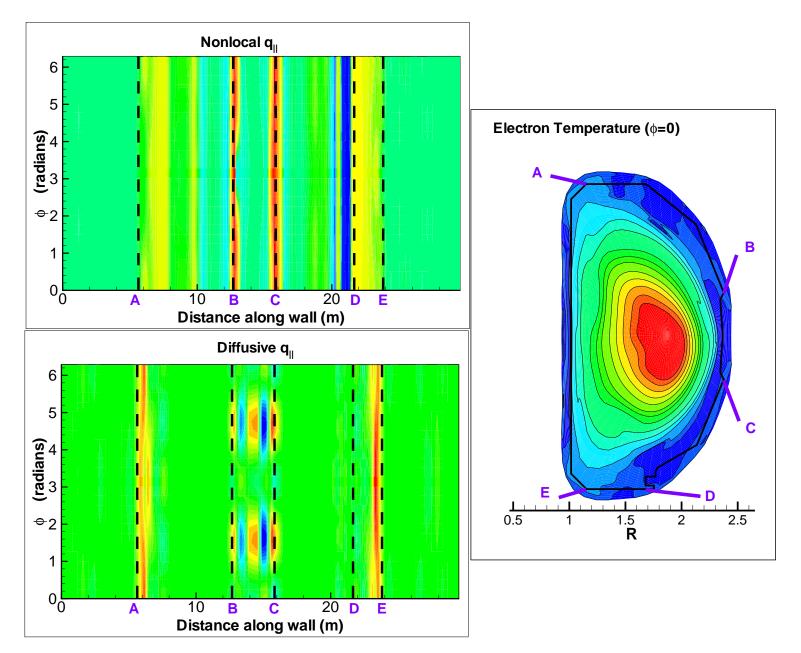

Generalized q_{\parallel} predicts more robust flattening.

- $m ext{ iny Cylindrical, diffusive analytical scaling with}^{12} \; \kappa_{\parallel} \sim T^{5/2}$, $T \sim w_d^{-1.6}$. a
- Toroidal, diffusive numerical scaling 13 $T \sim w_d^{-1.7}$.
- Generalized numerical scaling $T \sim w_d^{-1.5}$.

Nonlocal q_{\parallel} useful in disruption simulations.


ightharpoonup Simulation of disruption in DIII-D shot 87009 14 results in field line chaos.

number of $\mathbf{q}_{\scriptscriptstyle \parallel}$ sign changes **NIMROD** simulation of $\begin{array}{c} \textbf{high-}\beta \ \textbf{disruption in} \\ \textbf{DIII-D} \ \textbf{discharge} \ \textbf{87009} \end{array}$ 1.5 0.5 N N -0.5 2.5 1.5 2.5 2 2 R R

^a14 J. D. Callen, et al., Phys. Plasmas **6**, 2963 (1999).

Nonlocal closure qualitatively different than diffusive closure.

Heat flows rapidly along field lines hitting the wall.

Conclusion

- Developed nonlocal closures that encompass Landau, collisional, and particle trapping physics in general toroidal geometry.
- Implemented massively parallel semi-implicit approach in NIMROD code for application to high-performance, toroidal fusion experiments.
- Combination of generalized closure theory and massively parallel numerics permits simulation of parallel particle dynamics on fluid time scales.
- Scaling of $T \sim w_d^{-1.5}$ for nonlocal q_{\parallel} predicts robust flattening of temperature across magnetic islands.
- Preliminary application of nonlocal q_{\parallel} in disruption simulations reproduces qualitative features of wall heat loads.

Acknowledgments

- Collaborators:
 - J. D. Callen, C. C. Hegna, and C. R. Sovinec, U. of Wisconsin,
 - T. A. Gianakon, Los Alamos National Laboratory,
 - S. E. Kruger and D. D. Schnack, SAIC,
 - the NIMROD Team, and
 - the Center for Extended Macroscopic Modeling.
- This research has been supported by DOE under grant no. DE-FG03-01ER54618.