Update on M3D Results from the CDX-U Cross-Code Benchmark

Josh Breslau and the M3D code group

Center for Extended MHD Modeling Meeting Savannah, Georgia November 14, 2004

Outline

- I. The CDX Device
 - A. Machine Parameters
 - B. Constructing Equilibria
 - C. Benchmark Parameters
- II. First case: $q_0 = 0.922$
 - A. Linear Eigenmodes
 - B. Nonlinear Evolution
 - 1. Mode Coupling
 - 2. Stabilizing Effects
- III. Second case: $q_0 = 1.04$
 - A. n>1 Eigenmodes
 - B. Nonlinear Evolution
 - 1. Characterizing the Modes
 - 2. Heat Conduction Effects
- **IV.** Conclusions
- V. Topics for Further Study

Characteristics of the Current Drive Experiment Upgrade (CDX-U)

- Low aspect ratio tokamak $(R_0/a = 1.4 1.5)$
- Small ($R_0 = 33.5 \text{ cm}$)
- Elongation $\kappa \sim 1.6$
- *B_T* ~ 2300 gauss
- $I_{p} \sim 70 \text{ kA}$
- $n_{e} \sim 4 \times 10^{13} \text{ cm}^{-3}$
- $T_e^{\sim} \sim 100 \text{ eV} \rightarrow \text{S} \sim 10^4$
- Discharge time ~ 12 ms
- Soft X-ray signals from typical discharges indicate two predominant types of low-n MHD activity:
 - sawteeth
 - "snakes"

Generating Equilibria

Transport timescale code TSC follows axisymmetric evolution of typical CDX-U discharge.

(as q_0 drops to 0.92) and t=12.00 ms (q_0 =1.04) are used to initialize 3D runs.

Baseline Parameters

Lundquist Number S	~2×10 ⁴ on axis.
Resistivity η	Spitzer profile $\propto T_{eq}^{-3/2}$, cut off at 100× η_0
Prandtl Number Pr	10 on axis.
Viscosity µ	Constant in space and time.
Perpendicular thermal conduction κ_{\perp}	0
Parallel thermal conduction _K	0
Peak Plasma β	~ 3×10^{-2} (low-beta).
Density Evolution	Turned on for nonlinear phase.

Low Aspect Ratio: n=1 Eigenmode

Incompressible velocity stream function U

Toroidal current density

 $\gamma \tau_{\rm A} = 8.61 \times 10^{-3} \rightarrow \text{growth time} = 116 \tau_{\rm A}$

Predicted Eigenmode Agrees with NIMROD Result

Low Aspect Ratio: Higher *n* Eigenmodes

Incompressible velocity stream function U

Low Aspect Ratio: Nonlinear Kinetic Energy History

"Linear" high-*n* modes are driven, not eigenmodes Incompressible velocity stream function *U*

Component of "linear" mode in nonlinear run

Low Aspect Ratio: Nonlinear Time Series Poincaré Plots

Low Aspect Ratio: Nonlinear Time Series Poincaré Plots, Continued

Disruption occurs before completion of sawtooth crash.

Summary of the q₀<1 Case

- All toroidal modes of the q_{min} = 0.92 CDX equilibrium are linearly MHD-unstable.
 - *n* =1 is an internal kink mode
 - *n* >1 are ballooning instabilities
 - Higher *n* modes have higher growth rates.
- Nonlinear MHD evolution beginning with just an n=1 perturbation disrupts within a sawtooth crash time.
 - •High poloidal mode number *m* components of the *n*=1 mode interact to create islands, stochasticity in outer region.
 - n=1 mode couples to and drives higher n modes at q=1 rational surface to create further stochasticity.
- Adding large parallel thermal conductivity (via artificial sound wave) has a stabilizing effect on higher *n* modes, but not on *n*=1.
- •Adding the ω^* term to the MHD equations does not appreciably alter the growth rates of either the n = 1 or the n > 1 modes.

Case 2: $q_0 > 1$

Equilibrium taken from earlier in same TSC sequence as case 1.

Eigenmodes

(U, incompressible part of velocity stream function)

03 2.0

n = 3

 $\begin{array}{c} m\approx7\\ \gamma\,\tau_{\rm A}\approx1.42\times10^{-2} \end{array}$

n = 4

$$\label{eq:main_set} \begin{split} m &\approx 9 \\ \gamma \, \tau_{\rm A} &\approx 1.87 \times 10^{-2} \end{split}$$

Modes Observed Nonlinearly at *t*=219.6

(U, incompressible part of velocity stream function)

n = 3

 $\begin{array}{c} m \approx 8 \\ \gamma \, \tau_{\rm A} \approx 1.28 \times 10^{-2} \end{array}$

n = 4

 $\label{eq:phi} \begin{array}{l} m \approx 10 \\ \gamma \, \tau_{\rm A} \approx 1.64 \times 10^{-2} \end{array}$

Poincaré Plots

t=639.52 Poincaré Plots, continued t=692.03

Resistivity Scaling is Consistent with low-*n* Resistive Ballooning Modes

For each toroidal mode number *n*, the linear growth rate γ is found to be proportional to η^{α} :

n	α
2	0.597
3	0.590
4	0.568
5	0.553
6	0.543
7	0.542
8	0.546
9	0.560
10	0.586

Parallel Heat Conduction Stabilizes Some Modes, But Does Not Appear to Cause Saturation of Unstable Modes

Moderate Isotropic Heat Conduction Has Stronger Stabilizing

High Perpendicular Heat Conduction Stabilizes All Modes

Conclusions

- The CDX equilibrium is MHD-unstable to resistive ballooning modes in the absence of large perpendicular thermal diffusivity.
- Extended MHD effects may be needed to account for the relative quiescence of the CDX edge.

or

 The modes may be present but saturated as a result of high transport levels arising from stochasticity caused by their nonlinear interaction.

Topics for Further Study

- Determine sensitivity of high-*n* modes to two-fluid parameters.
- Re-run q_0 <1 case with realistic heat conduction.