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Characteristics of the Current Drive
Experiment Upgrade (CDX-U)
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 Low aspect ratio tokamak
(R/a=1.4-1.5)
 Small (R, =33.5cm)
 Elongation ¥~ 1.6
By~ 2300 gauss
. * |,~70KA

n, ~ 4x1013 cm-3
T,~100eV —» S ~ 104
Discharge time ~ 12 ms

« Soft X-ray signals from
typical discharges indicate
two predominant types of
low-n MHD activity:

— sawteeth
— “snakes”



Generating Equilibria

Transport timescale code TSC follows axisymmetric evolution of typical CDX-U discharge.

Equilibria at t=12.40 ms

(as g, drops to 0.92) and
t=12.00 ms (q,=1.04) are
used to initialize 3D runs.




Baseline Parameters

Lundquist Number S | ~2x10% on axis.

Resistivity 7 | Spitzer profile T2, cut off at 100x 7,

Prandtl Number Pr | 10 on axis.

Viscosity 12| Constant in space and time.

Perpendicular thermal | O
conduction «,

Parallel thermal | O
conduction K

Peak Plasma /|~ 3 x 102 (low-beta).

Density Evolution | Turned on for nonlinear phase.




Case 1l:q,<1

« Equilibrium taken from a
TSC sequence (Jsolver
file).

* (i, = 0.922

© (@) -9

toroidal current density

""" Questions to
[ | Investigate:
— Linear growth rate and
eigenfunctions
— Nonlinear evolution
 disruption?
» stagnation?

e repeated
reconnections?




Low Aspect Ratio:
n=1 Eigenmode

Incompressible velocity Toroidal current density
stream function U Jy

y75 = 8.61x 10 — growth time =116 7,



Predicted Eigenmode Agrees with NIMROD
Result

D: pert_CfR, -J_phi0 Himrod: data_math
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Low Aspect Rat

Higher n Eigenmodes

Incompressible velocity

stream function U

4 (projected)
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vz, = 1.71 x 1072




Low Aspect Ratio: Nonlinear Kinetic Energy History

By Mode Number
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“Linear” high-n modes are driven, not eigenmodes

Incompressible velocity stream function U

Component of “linear” mode
in nonlinear run

y=3.4x 102 y=4.5x10?

y=2.3x107



Low Aspect Ratio: Nonlinear Time Series
Poincaré Plots
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t = 1266.17, chopped x 4.470358 t = 1548.68



Ime Series

T

Nonlinear
Poincaré Plots, Continued
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Low Aspect Rat

t=1758.34

t=1686.41

1620.62

t

Disruption occurs before completion of sawtooth crash.



Summary of the q,<1 Case

» All toroidal modes of the g,,,= 0.92 CDX equilibrium are linearly MHD-
unstable.
* n =1is an internal kink mode
* n >1 are ballooning instabilities
» Higher n modes have higher growth rates.

* Nonlinear MHD evolution beginning with just an n=1 perturbation
disrupts within a sawtooth crash time.
* High poloidal mode number m components of the n=1 mode
Interact to create islands, stochasticity in outer region.
* N =1 mode couples to and drives higher n modes at g=1 rational
surface to create further stochasticity.

* Adding large parallel thermal conductivity (via artificial sound wave)
has a stabilizing effect on higher n modes, but not on n=1.

* Adding the o* term to the MHD equations does not appreciably alter
the growth rates of either the n =1 or the n >1 modes.



Case 2:q;>1

Equilibrium taken from earlier in same TSC sequence as case 1.

I g, ~9.35




Eigenmodes

(U, incompressible part of velocity stream function)

n=3

mx=7/ m=9
VTa ~ 1.42 x 1072 v7a ~ 1.87 x 1072



Nonlinear Kinetic Energy History

By Mode Number
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Modes Observed Nonlinearly at t=219.6

(U, incompressible part of velocity stream function)

m =~ 10
v7a ~ 1.64 x 1072
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- Polncaré Plots, continued .
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Resistivity Scaling is Consistent with low-n Resistive

Ballooning Modes

ny—>6.325x105
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1| Growth Rates

(gcut=12)
n 'Y'C’,\\
1
2 0.0184
3 0.0270
4 0.0337
5  0.0387
6  0.0416
7 0.0425
8  0.0409
9  0.0363
10  0.0281
Growth Rates
(gcut=11)
n 'Y'C’,\\
1
2 0.0345
3 0.0498
4 0.0607
5  0.0682
6  0.0726
7 0.0738
8 0.0714
9  0.0646
10  0.0516

For each toroidal mode
number n, the linear growth
rate y is found to be
proportional to n:
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Parallel Heat Conduction Stabilizes Some Moaes,
But Does Not Appear to Cause Saturation of Unstable Modes

By Mode Numbet
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Kinetic

Moderate Isotropic Heat Conduction Has Stronger Stabllizing

Effect

By Mode Nurmber
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Kinetic:

High Perpendicular Heat Conduction Stabilizes All Modes

By Mode Number

STl

1018

=
= IIII||

]70:2X1O_5; K_L - 909)(10_4, K” Off

el 11111

ERG



Conclusions

 The CDX equilibrium is MHD-unstable to
resistive ballooning modes in the absence of
large perpendicular thermal diffusivity.

 Extended MHD effects may be needed to

account for the relative quiescence of the CDX
edge.

or

 The modes may be present but saturated as a
result of high transport levels arising from
stochasticity caused by their nonlinear
Interaction.



Topics for Further Study

« Determine sensitivity of high-n modes to two-fluid
parameters.

* Re-run q,<1 case with realistic heat conduction.
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