Optimization of M3D for the Cray X1 and Neoclassical Closures

Don Spong, Steve Hirshman, Diego Castillo-Negrete, Ed D'Azevedo, Mark Fahey, Richard Mills Oak Ridge National Laboratory

Introduction

- ORNL LDRD awarded in October under the Terascale Computing and Simulation Science Initiative for "Terascale Computations of Multiscale Magnetohydrodynamics"
 - Team members: Don Spong (PI), Ed D'Azevedo (Co-PI), Steve Hirshman, Diego Castillo-Negrete, D. Batchelor, M. Fahey, R. Mills, Steve Jardin, W. Park, G. Y. Fu

Introduction

- ORNL LDRD awarded in October under the Terascale Computing and Simulation Science Initiative for "Terascale Computations of Multiscale Magnetohydrodynamics"
 - Team members: Don Spong (PI), Ed D'Azevedo (Co-PI), Steve Hirshman, Diego Castillo-Negrete, D. Batchelor, M. Fahey, R. Mills, Steve Jardin, W. Park, G. Y. Fu
- Motivated by ORNL's selection for the National Leadership Computing Facility (NLCF)

Our goals/motivations

- Adapt/optimize M3D for Cray systems
 - Opportunity to be involved again in MHD physics
 - Support future stellarator experiment (QPS)
 - ITER physics
- Adapt/optimize stellarator Monte Carlo code (DELTA5D) to Cray systems
 - Self-consistent non-local transport studies
 - Incorporate viscosity-base methods
- Develop improved particle-based closure relations for study of NTM's
- Programmatic: prepare for future involvement in:
 - Fusion scientific end station
 - Fusion Simulation Project
 - Multiscale Mathematics Initiative

M3D optimization issue for vector machines: sparse matrix solver

- Development of efficient sparse matrix solvers important to Cray X1, Red Storm
 - Common issue for PDE's based on finite elements/differences
 - Addressed by specialized storage schemes
 - E.g., jagged diagonal scheme successfully used on the Earth Simulator
 - Methods we have tested (code from SPARSKIT2 (by Yosef Saad, Univ. Minnesota - performs matrix multiply 1000 times)
 - Compressed sparse matrix row storage
 - ELLPACK
 - Diagonal
 - Jagged diagonal

parallel scaling on NERSC Seaborg

Source: PhD Dissertation of Richard Vuduc, available at Bebop.cs.berkeley.edu.

ELLPACK Format

- Assume each row has similar number of nonzeros
- Store and operate on extra zeros
- Do j=1,ncol
 - Do i=1,n
 - y(i) = y(i) + a(i,j) * x(ja(i,j))
- Regular computation is good for vectorization
- Bad if a few rows have many nonzeros

Jagged Diagonal Format

- Pre-sort rows by number of nonzeros (require permutation in result y(:) vector)
- Long vectors good for vectorization
- Do ii=1,jdiag
 - ! compute length and offset k1
 - Do j=1,len
 - y(j) = y(j) + a(k1+j) * x(ja(k1+j))
- Ellpack like computation for multiple diagonals with same length

7pt Stencil 50x50x50

- N=110592, nnz=760320
- Minnz=6, maxnz=7
- Ellpack 86% filled
- 7 jagged diagonals
- 7 diagonals

	IBM Power4 SGI Altix Cray X1		
CSR	4.08	16.74	21.90
JAG	5.04	13.06	1.60
Ellpack	5.58	13.59	1.67
Diag	4.51	8.69	0.97
Mflops	372	175	1569

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

BCSSTK18 (Structural Engineering)

- N=11948, nnz=80519
- Minnz=1, maxnz=31
- Ellpack 21% filled
- 31 jagged diagonals
- 1243 diagonals

	IBM Power4 SG	I Altix Cra	Cray X1	
CSR	0.37	0.55	1.75	
JAG	0.41	0.28	0.13	
Ellpack	1.54	2.58	0.63	
Diag	57.39	211.58	20.42	
Mflops	435	575	1239	

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Particle-based closure relations

- We are interested both in utilizing the existing M3D hybrid method and using techniques from DELTA5D, as appropriate
- Computational issues
 - Global memory access (co-array Fortran or other methods)
 - Parallelization over particles or over particles in volumetric regions
 - Implicit stepping methods for particles averaging over fast time scale bounce and transit motions
 - NTM: Ohm's law -> electrons
- Physics issues
 - Viscosity based calculation of bootstrap current
 - I = 2 Legendre harmonic moment
 - Not as sensitive to neglect of field-on-particle collisions, momentum restoring terms in collision operator, avoids large canceling terms of *I* = 1 moments
 - Such methods have recently been adapted/applied to 3D equilibria (H. Sugama, S. Nishimura, POP-2002, D. Spong Tues. morning invited talk)

Current Status

- DELTA5D ported to Cray X1 factor of 10 faster than similar clock speed IBM-SP scalar systems (Seaborg)
 - Further optimization should be possible
- M3D partially ported
 - Runs under some domain decomposition options, but not others
- Potential performance increase ~100 in going from existing IBM-SP to Cray 100 TF system
 - TFlops: ~5 to 100
 - Efficiency: ~6% to 35%