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Theses

Usually, (B-V -IIj) is introduced in the fluid moment equations. Extensions of
<B -V - H||> in toroidal geometries have been made.

® \\We obtained a closure for <B . V~H||> in a dynamic situation.

® T he stress tensor can be calculated for e < 1.

® T he viscous force presents sigularities at field maxima.
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*Previous work (“Time-dependent neoclassical viscosity” ) is available in the CPTC
website (UW-CPTC 04-6) and has been submitted to Phys. Plasmas.
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Motivation

Consider the momentum balance equation

dV
mn-— - = ng(E+V x B) — Vp — V- II;+F.

The viscous drive is predominantly in the parallel (to B) direction.
M ~0(°) Ma~O(p) Ni~O(p7).

Thus, the relevant dynamics are contained in

d ) Ji B
mn£ (VHB) =nq(E“B—B-V¢> —-B-Vp—-B-V. I —ng—.
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When flux-surface-averaged, the total parallel momentum equation gives the
evolution of the parallel flow

And from the full electron momentum equation, one can calculate an electrical
conductivity

me@ = —nee” (B B) — e (B- V- Ije) +veme (BJ))



The parallel viscous force has averaged and varying parts.

Consider for simplicity the magnetic field model

B(0) = Bmin |1 4 2esin® (6/2)]

In this simple geometry, the viscous force is:

Note that, for My periodic

(Mysind) ~ O (1/+/e)

For (b-V -II;) #0 , My is odd and can be written as

M, = Z ansin (n6)
n=1



Since a1 = 2<b VAR H||>/2€

1 0B =
——T = (\/ 2€8in20) 2.92mnU + 2esinf Z ansin (nd)
B 00 oy
and
on, < 1 ) .
— = cosf ) 2.92mnU —+ anncos (nb
00 vV 2€ nz:; (n6)
Since n > 2e,
20l
3 06

The term that survives the flux-surface-average is smaller than the spatial vary-
ing component.

The part that one misses when considering flux-surface-averaged quan-
tities has at least one term O (1/¢) larger than the average!



Chapman-Enskog (CE).

Simplified DKE for the distortion (f = fy + F)
dF

— +’U||b \Y (F‘|‘—’U||BUfM) __'C (F) - g (b V- HH) S

The kinetic distortion is expanded as follows

F = Fo+ veF7 + ...
where v, = v, /e3/?w, < 1 in the banana regime.

Usually, to solve for Fp a bounce average is calculated.

The lowest order solution is in terms of averaged quantities and from it one
obtains (for 0/0t < wy)

<B VA H||> ~ mnpu <BQ> U
where U (v) = V| (0) /B (0) .



Dynamic, nonlocal calculation

® T he solution in the dynamic case is in terms of Cordey eigenfunctions which
satisfy

<CR (/\n)> X /fn/\na

® T he closure obtained is

—_—

<B -V H||> = nmv (w) <BQ> U

e Quantities are in terms of the eigenfunctions (v = v, /2)

o) = [ By LV S fi(v,w) fi(v,w) <1 B z'_w) S 2 AndA
) 3 R o (,) 5 ) 2 e =i
> [ Adn
n

- c_vaAC A2 (B/v)) dx

® T he Laplace tranform can be inverted analitically in a small ¢ expansion

'1)2 v
<B -V - H||> = <BQ> mn/d3v gf—M_;_ {U (t) ft gaU (t) (1 o Z’Yn)

vy, v, Ot

t
In au —VR,(t—T
IR =S )””}‘




® \With the closure obtained, the parallel flow evolution vields an integral equation

U(t):h(t)—l—/o K (t;7) U (1) dr.

® AIlso, a frequency-dependent electrical conductivity can be calculated from elec-
tron parallel momentum balance:

Nee?

-1
5(w)=0r{1—|—yle[v(w)—iw]} : Or

Mele

e The real (left) and imaginary (right) parts of /o, for e = 0 (gray), e = 1073
(dotted), e = 1072 (dashed) and e = 0.1 (solid).
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Spatial variation of the viscous force

® The first term that has non-zero P> moment is F1(\, v,0) which can be obtained
by integrating the 1st order DKE

0
Flzf C(FO)d9+3iBf—M”n+h(¢,A,v)+O(\@)-
0 p

Yl

® T he parallel viscous force can then be written as

B.-V. Iy = (B-V-II)) [f1 (8) + f2 ()] .

® The geometric factors are given by in terms of elliptic functions (F and K ).

§3237Ln (QQ)E(Q,S)] 1 S1n (QG)E(G, 1)} N O(

11 [t d
f1(0) r3 / 2 -82 3/2 N 3/2
V2efr | Jo |1 —s%sin?0| E(s) 2 (1 — s2sin20)%/ 2 (1 — sin20)>

sin (20) E©,1) 1 ds E(0,s) N
f2 (0) o< v/2e i {\/1 — 5in20 /0 E(s) (1 —SQSin29)3/2} .




B.-V.-II;, =(B-V-II) [f1 (0) + f2 (9)].

e Note that
f1(0) ~ 1/cos0e, f2 (9) ~ sin?6,

e It can be verified that (f1(6)) =0 and (f>(0)) = 1.

e The result has 1/cos? singularities arising from integrating up to the boundary
at s = 1.




Pressure anisotropy

e Considering B = By [1 + 2¢7 (8)] with /e < 1 [defining ¢ (A) = [ (A/B) d6]

s3ds

1
—mn 2
N >/\/1+s27(9)(32+26)3/2><

. ¢ (¢1+s%<0>) 5 B 5
<\/1-|-327(0)> <\/1-|-327(e)> V14 527 (6) V14 527 (6)
e For the bumpy cylinder magnetic field 7 (8) = sin?6 and the solution is

_ 1 f ) 1 ds E (6, 5) . E(9,1)
= V2¢€ fi wU (B >{/o E(s) (1 — s2sin20)3/? \/1—sin20}.
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Dynamic pressure anisotropy

® Retaining the time derivative term in the 1st order unaveraged DKE

—~

0 0

1 —

F1:/ dé’c( O)—I—iw/ d0—TFp.
0 I 0

v U”

® Taking the P, moment we get, for small e,

My ~ z—enmU E Mndn (0) /d3v02hf02 —
1 t

n f,kn —iw/v
1 °FE AVS E 1 AVS
I, (0) = = / > (0’8)3/28 gs — 20 1) (8 )
4 (1 — s2sin26) Os \/1 — sin20 \ 0s /1

e Note that, since the eigenfunction equation for A, is for (Cr (A\;)), there is no
trivial way of introducing the eigenvalue or using the orthogonality condition.




Summary

® \We previously obtained a time-dependent closure for <B : V-H||> and explored
the dynamics of parallel flow damping and the electrical conductivity.

® The variation of the pressure anisotropy and the viscous force within a flux
surface were calculated in a small ¢ approximation.

® For t > v (steady state) the parallel viscous force can be written as

B-V-II;, = (B-V-II))  {f1(0) +  f(0)}
1/+/€ Ve ~ 1/ecos?0 ~ sin20
(f1(6)) =0 (f2(0)) =1

Issues / Future work

e In the dynamic case, Fp is given in terms of Cordey eigenfunctions. Orthogo-
nality conditions only apply for flux-surface-averaged quantities.

® The 0-dependence of the I results in a coefficient I,, (¢). Can it be numerically
evaluated?
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