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Introduction
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Motivation and goals

• PIXIE3D is a project in progress. This is a progress report.

• GOAL: to demonstrate the path for fully implicit MHD in general geometries, using
state-of-the-art scalable solver technology (NK-MG), and exploiting massively parallel
computing environments.

• Desired features of implicit solver:

– Fully implicit and nonlinear: Newton-Krylov.
– Parallel: PETSC.
– Scalable in mesh and time step size: PHYSICS-BASED PRECONDITIONING.

• Desired features of spatial representation:

– Conservative.
– Solenoidal in the magnetic field (no divergence cleaning).
– Arbitrary geometry (curvilinear grids).
– Numerically stable without physical or numerical dissipation.
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Some perspective on finite-volume implicit MHD

Author (year) TS Cons Solen Geom Dim Spatial rep Other

Lindemuth (73) lin. ADI NO NO Cyl. 2D Cell-cent. –
Schnack (80) lin. ADI YES NO Orth. 2D Cell-cent. –

Finan (81) nl. ADI NO NO Orth. 3D Cell-cent. NL unst.
Schnack (87) SI NO YES Cyl. 3D Stagg. –

Jones (97) SI (ADI) YES NO Cart. 2D Cell-cent. Shock
Amari (99) SI (P-C) NO YES Cart. 2D Stagg. –
PIXIE3D NK YES YES Curv. 3D Cell-cent. Parallel
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MHD model equations

∂ρ

∂t
+ ∇ · (ρ~v) = 0,

∂ ~B

∂t
+ ∇× ~E = 0,

∂(ρ~v)

∂t
+∇ ·

[
ρ~v~v −

~B ~B

µ0

− ρν(T )∇~v +
←→
I (p +

B2

2µ0

)

]
= 0,

∂T

∂t
+ ~v · ∇T + (γ − 1)T∇ · ~v = 0,

• Plasma is assumed polytropic p ∝ nγ.

• Resistive Ohm’s law (for now):

~E = −~v × ~B +
η(T )

µ0

∇× ~B
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Spatial discretization
L. Chacón, Comput. Phys. Comm., 163 (3), pp. 143-171 (2004)
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Properties of spatial discretization

• Features of spatial representation:
– Conservative.
– Solenoidal in the magnetic field (no divergence cleaning).
– Arbitrary geometry (curvilinear grids).
– Numerically stable without physical or numerical dissipation.

• Equations are discretized on logical grid (~ξ) (uniform and logically rectangular).
• Non-staggered (cell-centered) representation (advantageous for MG treatment).
• However, conservation requires fluxes to be defined at faces⇒ Interpolation is needed.

THE CHOICE OF INTERPOLATION IS CRUCIAL
TO AVOID NONLINEAR (ANTI-DIFFUSION) INSTABILITIES.

• The ZIP average was proposed by Hirt1 to avoid antidiffusive nonlinear instabilities.
1. ZIP is exactly conservative and second-order
2. ZIP satisfies the chain rule numerically
3. ZIP is nonlinearly stable (no antidiffusion), and
4. ZIP is linearly stable (no red-black modes).

1Hirt, JCP 2 (1968)
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Numerical test I: Resistive tearing mode in sinusoidal grid

• Equilibrium: Bx0(y) = tanh(y/λ) (λ = 0.2), uniform density, pressure; no flow.
• 2D domain of 4x1, 32x32 grid, η = 10−2, ν = 10−3, γ = 5/3.
• Sinusoidal grid defined as perturbation of Cartesian grid:

x = ξ1 − ε sin(
2π

Lx
ξ1) sin(

2π

Ly
ξ2) , y = ξ2 − ε sin(

2π

Lx
ξ1) sin(

2π

Ly
ξ2) , ε = 0.05

• Linear growth rate γEV = 0.098; implicit solver: γ32×32 = 0.089, γ64×64 = 0.097.
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Resistive tearing mode in sinusoidal grid (cont)

• Grid convergence study with sinusoidal grid demonstrates second-order accurate dis-
cretization:
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Numerical test II: Screw pinch, m=1 (kink) mode

• Force-free equilibrium defined by (x = r/λ):

Bθ =
Bx

1 + x2
; Bz =

√
1− B2

[
1− (1 + x2)−2

]
; B =

1 + (a/λ)2√
[1 + (a/λ)2]2 − 1

with: λ = 0.5, a = 2, m = 1, k = −n/R = −2, η = ν = 10−3, T0 = 10−5, γ = 1

• Helical coordinate system: ξ1 = r , ξ2 = θ + k
mz

• Linear growth rate γEV = 0.071; implicit solver: γ32×32 = 0.071.
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Progress in 3D primitive-variable MHD:
PIXIE3D
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Jacobian-Free Newton-Krylov Methods

• Objective: solve nonlinear system ~G(~xn+1) = ~0 efficiently.

• Converge nonlinear couplings using Newton-Raphson method:
∂ ~G

∂~x

∣∣∣∣∣
k

δ~xk = −~G(~xk) .

• Jacobian-free implementation:

(
∂ ~G

∂~x

)

k

~y = Jk~y = lim
ε→0

~G(~xk + ε~y)− ~G(~xk)

ε

• Krylov method of choice: GMRES (nonsymmetric systems).

• Right preconditioning: solve equivalent Jacobian system for δy = Pkδ~x:

JkP
−1
k Pkδ~x︸ ︷︷ ︸

δ~y

= ~−Gk

APPROXIMATIONS IN PRECONDITIONER DO NOT AFFECT ACCURACY OF CONVERGED

SOLUTION; THEY ONLY AFFECT EFFICIENCY!
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Concept of physics-based preconditioning

• Developing AN implicit Newton-Krylov MHD solver is “EASY”:

JUST BUILD NONLINEAR FUNCTION EVALUATION ROUTINE!

• Developing an EFFICIENT Newton-Krylov MHD solver is “HARD”: need SCALABLE
preconditioning.

– Elliptic and parabolic systems: use scalable MG methods. Usually OK.
– Hyperbolic systems: diagonally submissive, not amenable to MG. HARD!

• Physics-based preconditioning: technique to develop effective, SCALABLE precondi-
tioners for hyperbolic systems. Based on two concepts:

– SEMI-IMPLICIT approximations: limit level of implicitness based on physical insight.
– PARABOLIZATION: from hyperbolic to parabolic, a MG-friendly formulation.
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Parabolization and Schur complement: an example

• PARABOLIZATION EXAMPLE:

∂tu = ∂xv , ∂tv = ∂xu.

u
n+1

= u
n

+ ∆t∂xv
n+1

,

v
n+1

= v
n

+ ∆t∂xu
n+1

.

(I −∆t
2
∂xx)u

n+1
= u

n
+ ∆t∂xv

n

• PARABOLIZATION via SCHUR COMPLEMENT:
[

D1 U
L D2

]
=

[
I UD−1

2
0 I

] [
D1 − UD−1

2 L 0

0 D2

] [
I 0

D−1
2 L I

]
.

Stiff off-diagonal blocks L, U now sit in diagonal via Schur complement D1 − UD−1
2 L.

The system has been “PARABOLIZED.”

D1 − UD
−1
2 L = (I −∆t

2
∂xx)
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Resistive MHD Jacobian block structure

• The linearized resistive MHD model has the following couplings:

δρ = Lρ(δρ, δ~v)

δT = LT (δT, δ~v)

δ ~B = LB(δ ~B, δ~v)

δ~v = Lv(δ~v, δ ~B, δρ, δT )

• Therefore, the Jacobian of the resistive MHD model has the following coupling struc-
ture:

Jδ~x =




Dρ 0 0 Uvρ

0 DT 0 UvT

0 0 DB UvB

Lρv LTv LBv Dv







δρ

δT

δ ~B

δ~v




• Diagonal blocks contain advection-diffusion contributions, and are “easy” to invert using
MG techniques. Off diagonal blocks L and U contain all hyperbolic couplings.
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PARABOLIZATION: Schur complement formulation

• We consider the block structure:

Jδ~x =

[
M U

L Dv

](
δ~y

δ~v

)

δ~y =




δρ

δT

δ ~B


 ; M =




Dρ 0 0

0 DT 0

0 0 DB




• M is “easy” to invert (advection-diffusion, MG-friendly).

• Schur complement analysis of 2x2 block J yields:

[
M U

L Dv

]−1

=

[
I 0

−LM−1 I

] [
M−1 0

0 P−1
Schur

] [
I −M−1U

0 I

]
,

with PSchur = Dv − LM−1U .

• EXACT Jacobian inverse only requires M−1 and P−1
Schur.

• Schur complement formulation is fundamentally unchanged in Hall MHD!
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Physics-based preconditioner: SEMI-IMPLICIT approximation
• The Schur complement analysis translates into the following 3-step EXACT inversion

algorithm:

Predictor : δ~y
∗

= −M
−1

Gy

Velocity update : δ~v = P
−1
Schur[−Gv − Lδ~y

∗
], PSchur = Dv − LM

−1
U

Corrector : δ~y
∗
−M

−1
Uδ~v

• MG treatment of PSchur is impractical: need suitable simplifications (SEMI-IMPLICIT).

• Simplest simplification: M
−1
≈ ∆t in steps 2 & 3:

δ~y
∗

= −M
−1

Gy

δ~v ≈ P
−1
SI [−Gv − Lδ~y

∗
] ; PSI = Dv −∆tLU

δ~y ≈ δ~y
∗
−∆tUδ~v

PSI = ρ
n
[
←→
I /∆t + θ(~v0 · ∇

←→
I +

←→
I · ∇~v0 − ν

n
∇

2←→
I )
]

+ ∆tθ
2
W ( ~B0, p0)

W ( ~B0, p0) = ~B0 ×∇×∇× [
←→
I × ~B0]−~j0 ×∇× [

←→
I × ~B0]−∇[

←→
I · ∇p0 + γp0∇ ·

←→
I ]

• We employ multigrid methods (MG) to approximately invert PSI and M : 2 V(4,4) cycles
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Efficiency: ∆t scaling
(2D Cartesian, uniform grid)

32× 32

∆t Newton/∆t GMRES/∆t CPU (s) CPUexp/CPU ∆t/∆tCFL

2 3 21.4 780 1.5 400
3 3 26.6 630 1.9 600
4 3 34.5 580 2 800
6 3 36.9 420 2.8 1200

128× 128

∆t Newton/∆t GMRES/∆t CPU (s) CPUexp/CPU ∆t/∆tCFL

0.5 3 15 12675 1.6 435
0.75 3 19.1 9984 2.0 650
1.0 3 21.6 7640 2.7 870
1.5 3 26.2 5678 3.6 1300
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Efficiency: grid scaling
(2D Cartesian, uniform grid)

∆t = 1200∆tCFL, 10 time steps

Grid ∆t Newton/∆t GMRES/∆t CPU ĈPU

32x32 6 3 40 420 10.5
64x64 3 3 34.5 1375 40.5

128x128 1.5 3 26.2 5678 216

ĈPU ∼ O(N) OPTIMAL SCALING!
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Conclusions

• A cell-centered (collocated) difference scheme has been devised that:
– Is conservative in particles and momentum (energy also if energy equation is chosen

instead of temperature).
– Is solenoidal in the magnetic field.
– Is linearly (no red-black modes) and nonlinearly (no anti-diffusive terms) stable in

the absence of physical and/or numerical dissipation.
– Is suitable for curvilinear representations (as needed in fusion applications).

• A viable physics-based preconditioning has been developed for resistive MHD. High-
lights:
– SCALABILITY: CPU ∼ O(N ×∆t−0.7)

– WINS OVER EXPLICIT METHODS: CPU speedup ∼ 4 in Cartesian coordinates
(will be much more in cylindrical/toroidal geometries).

• Future work:
– 3D proof-of-principle efficiency results in Cartesian.
– Extend efficiency results to other geometries: MG in curvilinear geometries
– Incorporate preconditioner in PETSc parallel version.
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