PIXIE3D: A Parallel, Implicit, eXtended MHD 3D Code

L. Chacón

Los Alamos National Laboratory P.O. Box 1663, Los Alamos, NM 87545

> CEMM MEETING SAVANNAH, GA NOV. 14TH, 2004

Outline

Introduction/motivation

Spatial discretization: ZIP average

Temporal discretization:

Newton-Krylov Physics-based preconditioning: 2D, 3D

Concluding remarks

Introduction

Motivation and goals

- PIXIE3D is a project in progress. This is a progress report.
- GOAL: to demonstrate the path for fully implicit MHD in general geometries, using state-of-the-art scalable solver technology (NK-MG), and exploiting massively parallel computing environments.
- Desired features of implicit solver:
 - Fully implicit and nonlinear: Newton-Krylov.
 - Parallel: PETSC.
 - Scalable in mesh and time step size: PHYSICS-BASED PRECONDITIONING.
- Desired features of spatial representation:
 - Conservative.
 - Solenoidal in the magnetic field (no divergence cleaning).
 - Arbitrary geometry (curvilinear grids).
 - Numerically stable without physical or numerical dissipation.

Some perspective on finite-volume implicit MHD

Author (year)	TS	Cons	Solen	Geom	Dim	Spatial rep	Other
Lindemuth (73)	lin. ADI	NO	NO	Cyl.	2D	Cell-cent.	_
Schnack (80)	lin. ADI	YES	NO	Orth.	2D	Cell-cent.	—
Finan (81)	nl. ADI	NO	NO	Orth.	3 D	Cell-cent.	NL unst.
Schnack (87)	SI	NO	YES	Cyl.	3 D	Stagg.	—
Jones (97)	SI (ADI)	YES	NO	Cart.	2D	Cell-cent.	Shock
Amari (99)	SI (P-C)	NO	YES	Cart.	2D	Stagg.	—
PIXIE3D	NK	YES	YES	Curv.	3D	Cell-cent.	Parallel

MHD model equations

$$\begin{split} \frac{\partial \rho}{\partial t} &+ \nabla \cdot (\rho \vec{v}) = 0, \\ \frac{\partial \vec{B}}{\partial t} &+ \nabla \times \vec{E} = 0, \\ \frac{\partial (\rho \vec{v})}{\partial t} + \nabla \cdot \left[\rho \vec{v} \vec{v} - \frac{\vec{B} \vec{B}}{\mu_0} &- \rho \nu(T) \nabla \vec{v} + \overleftarrow{I} \left(p + \frac{B^2}{2\mu_0} \right) \right] = 0, \\ \frac{\partial T}{\partial t} + \vec{v} \cdot \nabla T &+ (\gamma - 1) T \nabla \cdot \vec{v} = 0, \end{split}$$

- Plasma is assumed polytropic $p \propto n^{\gamma}$.
- Resistive Ohm's law (for now):

$$\vec{E} = -\vec{v} imes \vec{B} + rac{\eta(T)}{\mu_0}
abla imes \vec{B}$$

Spatial discretization

L. Chacón, Comput. Phys. Comm., 163 (3), pp. 143-171 (2004)

Properties of spatial discretization

- Features of spatial representation:
 - Conservative.
 - Solenoidal in the magnetic field (no divergence cleaning).
 - Arbitrary geometry (curvilinear grids).
 - Numerically stable without physical or numerical dissipation.
- Equations are discretized on logical grid $(\vec{\xi})$ (uniform and logically rectangular).
- Non-staggered (cell-centered) representation (advantageous for MG treatment).
- However, conservation requires fluxes to be defined at faces \Rightarrow Interpolation is needed.

THE CHOICE OF INTERPOLATION IS CRUCIAL TO AVOID NONLINEAR (ANTI-DIFFUSION) INSTABILITIES.

- The ZIP average was proposed by Hirt¹ to avoid antidiffusive nonlinear instabilities.
 - 1. ZIP is exactly conservative and second-order
 - 2. ZIP satisfies the chain rule numerically
 - 3. ZIP is nonlinearly stable (no antidiffusion), and
 - 4. ZIP is linearly stable (no red-black modes).

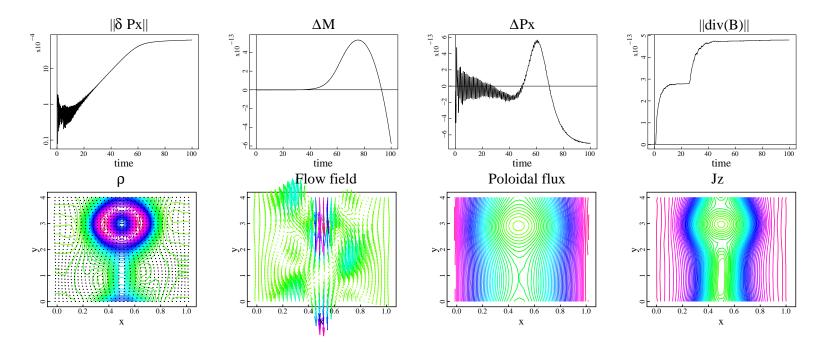
¹Hirt, JCP 2 (1968)

Numerical test I: Resistive tearing mode in sinusoidal grid

- Equilibrium: $B_{x0}(y) = \tanh(y/\lambda)$ ($\lambda = 0.2$), uniform density, pressure; no flow.
- 2D domain of 4x1, 32x32 grid, $\eta = 10^{-2}$, $\nu = 10^{-3}$, $\gamma = 5/3$.
- Sinusoidal grid defined as perturbation of Cartesian grid:

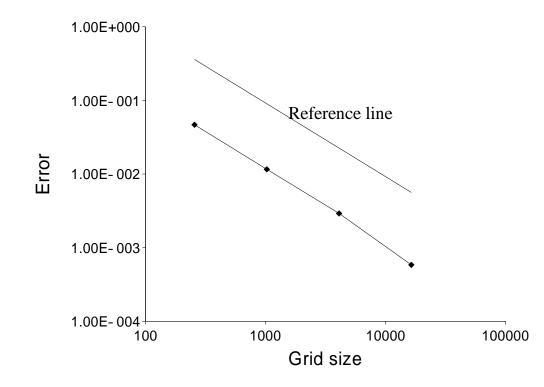
$$x = \xi_1 - \epsilon \sin(\frac{2\pi}{L_x}\xi_1) \sin(\frac{2\pi}{L_y}\xi_2) , \ y = \xi_2 - \epsilon \sin(\frac{2\pi}{L_x}\xi_1) \sin(\frac{2\pi}{L_y}\xi_2) , \ \epsilon = 0.05$$

• Linear growth rate $\gamma_{EV} = 0.098$; implicit solver: $\gamma_{32\times32} = 0.089$, $\gamma_{64\times64} = 0.097$.



Resistive tearing mode in sinusoidal grid (cont)

 Grid convergence study with sinusoidal grid demonstrates second-order accurate discretization:



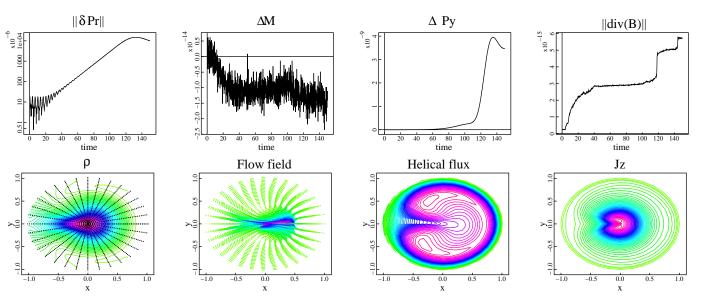
Numerical test II: Screw pinch, m=1 (kink) mode

• Force-free equilibrium defined by $(x = r/\lambda)$:

$$B_{\theta} = \frac{Bx}{1+x^2} ; \ B_z = \sqrt{1-B^2 \left[1-(1+x^2)^{-2}\right]} ; \ B = \frac{1+(a/\lambda)^2}{\sqrt{\left[1+(a/\lambda)^2\right]^2 - 1}}$$

with: $\lambda = 0.5, a = 2, m = 1, k = -n/R = -2, \eta = \nu = 10^{-3}, T_0 = 10^{-5}, \gamma = 1$

- Helical coordinate system: $\xi_1 = r$, $\xi_2 = \theta + \frac{k}{m}z$
- Linear growth rate $\gamma_{EV} = 0.071$; implicit solver: $\gamma_{32\times32} = 0.071$.



Progress in 3D primitive-variable MHD: PIXIE3D

Jacobian-Free Newton-Krylov Methods

- Objective: solve nonlinear system $\vec{G}(\vec{x}^{n+1}) = \vec{0}$ efficiently.
- Converge nonlinear couplings using Newton-Raphson method:

$$\left.rac{\partial ec G}{\partial ec x}
ight|_k \delta ec x_k = -ec G(ec x_k) \; .$$

• Jacobian-free implementation:

$$\left(\frac{\partial \vec{G}}{\partial \vec{x}}\right)_k \vec{y} = J_k \vec{y} = \lim_{\epsilon \to 0} \frac{\vec{G}(\vec{x}_k + \epsilon \vec{y}) - \vec{G}(\vec{x}_k)}{\epsilon}$$

- Krylov method of choice: GMRES (nonsymmetric systems).
- Right preconditioning: solve equivalent Jacobian system for $\delta y = P_k \delta \vec{x}$:

$$J_k P_k^{-1} \underbrace{\underline{P_k \delta \vec{x}}}_{\delta \vec{y}} = -\vec{G}_k$$

APPROXIMATIONS IN PRECONDITIONER DO NOT AFFECT ACCURACY OF CONVERGED SOLUTION; THEY ONLY AFFECT EFFICIENCY!

Concept of physics-based preconditioning

• Developing AN implicit Newton-Krylov MHD solver is "EASY":

JUST BUILD NONLINEAR FUNCTION EVALUATION ROUTINE!

- Developing an EFFICIENT Newton-Krylov MHD solver is "HARD": need SCALABLE preconditioning.
 - Elliptic and parabolic systems: use scalable MG methods. Usually OK.
 - Hyperbolic systems: diagonally submissive, not amenable to MG. HARD!
- Physics-based preconditioning: technique to develop effective, SCALABLE preconditioners for hyperbolic systems. Based on two concepts:
 - SEMI-IMPLICIT approximations: limit level of implicitness based on physical insight.
 - PARABOLIZATION: from hyperbolic to parabolic, a MG-friendly formulation.

Parabolization and Schur complement: an example

• PARABOLIZATION EXAMPLE:

$$\partial_t u = \partial_x v , \ \partial_t v = \partial_x u.$$

$$u^{n+1} = u^n + \Delta t \partial_x v^{n+1},$$

$$v^{n+1} = v^n + \Delta t \partial_x u^{n+1}.$$

$$(I - \Delta t^2 \partial_{xx})u^{n+1} = u^n + \Delta t \partial_x v^n$$

• PARABOLIZATION via SCHUR COMPLEMENT:

$$\begin{bmatrix} D_1 & U \\ L & D_2 \end{bmatrix} = \begin{bmatrix} I & UD_2^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} D_1 - UD_2^{-1}L & 0 \\ 0 & D_2 \end{bmatrix} \begin{bmatrix} I & 0 \\ D_2^{-1}L & I \end{bmatrix}$$

Stiff off-diagonal blocks L, U now sit in diagonal via Schur complement $D_1 - UD_2^{-1}L$. The system has been "PARABOLIZED."

$$D_1 - UD_2^{-1}L = (I - \Delta t^2 \partial_{xx})$$

Resistive MHD Jacobian block structure

• The linearized resistive MHD model has the following couplings:

$$egin{array}{rcl} \delta
ho &=& L_{
ho}(\delta
ho, \delta ec v) \ \delta T &=& L_{T}(\delta T, \delta ec v) \ \delta ec B &=& L_{B}(\delta ec B, \delta ec v) \ \delta ec v &=& L_{v}(\delta ec v, \delta ec B, \delta
ho, \delta T) \end{array}$$

• Therefore, the Jacobian of the resistive MHD model has the following coupling structure:

$$J\delta \vec{x} = \begin{bmatrix} D_{\rho} & 0 & 0 & U_{v\rho} \\ 0 & D_{T} & 0 & U_{vT} \\ 0 & 0 & D_{B} & U_{vB} \\ L_{\rho v} & L_{Tv} & L_{Bv} & D_{v} \end{bmatrix} \begin{pmatrix} \delta \rho \\ \delta T \\ \delta \vec{B} \\ \delta \vec{v} \end{pmatrix}$$

• Diagonal blocks contain advection-diffusion contributions, and are "easy" to invert using MG techniques. Off diagonal blocks L and U contain all hyperbolic couplings.

PARABOLIZATION: Schur complement formulation

• We consider the block structure:

$$J\delta\vec{x} = \begin{bmatrix} M & U \\ L & D_v \end{bmatrix} \begin{pmatrix} \delta\vec{y} \\ \delta\vec{v} \end{pmatrix}$$
$$\delta\vec{y} = \begin{pmatrix} \delta\rho \\ \deltaT \\ \delta\vec{B} \end{pmatrix} \quad ; \quad M = \begin{pmatrix} D_\rho & 0 & 0 \\ 0 & D_T & 0 \\ 0 & 0 & D_B \end{pmatrix}$$

- $\begin{pmatrix} 0B \end{pmatrix}$ $\begin{pmatrix} 0 & 0 \end{pmatrix}$
- M is "easy" to invert (advection-diffusion, MG-friendly).
- Schur complement analysis of 2x2 block J yields:

$$\begin{bmatrix} M & U \\ L & D_v \end{bmatrix}^{-1} = \begin{bmatrix} I & 0 \\ -LM^{-1} & I \end{bmatrix} \begin{bmatrix} M^{-1} & 0 \\ 0 & P_{Schur}^{-1} \end{bmatrix} \begin{bmatrix} I & -M^{-1}U \\ 0 & I \end{bmatrix},$$

with $P_{Schur} = D_v - LM^{-1}U$.

- EXACT Jacobian inverse only requires M^{-1} and P_{Schur}^{-1} .
- Schur complement formulation is fundamentally unchanged in Hall MHD!

Physics-based preconditioner: SEMI-IMPLICIT approximation

 The Schur complement analysis translates into the following 3-step EXACT inversion algorithm:

Predictor :
$$\delta \vec{y}^* = -M^{-1}G_y$$

Velocity update : $\delta \vec{v} = P_{Schur}^{-1}[-G_v - L\delta \vec{y}^*], P_{Schur} = D_v - LM^{-1}U$
Corrector : $\delta \vec{y}^* - M^{-1}U\delta \vec{v}$

- MG treatment of P_{Schur} is impractical: need suitable simplifications (SEMI-IMPLICIT).
- Simplest simplification: $M^{-1} \approx \Delta t$ in steps 2 & 3:

$$\begin{split} \delta \vec{y}^{*} &= -M^{-1} G_{y} \\ \delta \vec{v} &\approx P_{SI}^{-1} \left[-G_{v} - L \delta \vec{y}^{*} \right] ; \ P_{SI} = D_{v} - \Delta t L U \\ \delta \vec{y} &\approx \delta \vec{y}^{*} - \Delta t U \delta \vec{v} \end{split}$$

 $P_{SI} = \rho^n \left[\overleftarrow{I} / \Delta t + \theta (\vec{v}_0 \cdot \nabla \overleftarrow{I} + \overleftarrow{I} \cdot \nabla \vec{v}_0 - \nu^n \nabla^2 \overleftarrow{I}) \right] + \Delta t \theta^2 W(\vec{B}_0, p_0)$ $W(\vec{B}_0, p_0) = \vec{B}_0 \times \nabla \times \nabla \times [\overleftarrow{I} \times \vec{B}_0] - \vec{j}_0 \times \nabla \times [\overleftarrow{I} \times \vec{B}_0] - \nabla [\overleftarrow{I} \cdot \nabla p_0 + \gamma p_0 \nabla \cdot \overleftarrow{I}]$

• We employ multigrid methods (MG) to approximately invert P_{SI} and M: 2 V(4,4) cycles

Efficiency: Δt scaling (2D Cartesian, uniform grid)

32×32

Δt	Newton/ Δt	$GMRES/\Delta t$	CPU (s)	CPU_{exp}/CPU	$\Delta t/\Delta t_{CFL}$
2	3	21.4	780	1.5	400
3	3	26.6	630	1.9	600
4	3	34.5	580	2	800
6	3	36.9	420	2.8	1200

128×128

Δt	Newton/ Δt	$GMRES/\Delta t$	CPU (s)	CPU_{exp}/CPU	$\Delta t/\Delta t_{CFL}$
0.5	3	15	12675	1.6	435
0.75	3	19.1	9984	2.0	650
1.0	3	21.6	7640	2.7	870
1.5	3	26.2	5678	3.6	1300

Efficiency: grid scaling (2D Cartesian, uniform grid)

 $\Delta t = 1200 \Delta t_{CFL}$, 10 time steps

Grid	Δt	Newton/ Δt	$GMRES/\Delta t$	CPU	\widehat{CPU}
32x32	6	3	40	420	10.5
64x64	3	3	34.5	1375	40.5
128x128	1.5	3	26.2	5678	216

 $\widehat{CPU} \sim \mathcal{O}(N)$ OPTIMAL SCALING!

Conclusions

- A cell-centered (collocated) difference scheme has been devised that:
 - Is conservative in particles and momentum (energy also if energy equation is chosen instead of temperature).
 - Is solenoidal in the magnetic field.
 - Is linearly (no red-black modes) and nonlinearly (no anti-diffusive terms) stable in the absence of physical and/or numerical dissipation.
 - Is suitable for curvilinear representations (as needed in fusion applications).
- A viable physics-based preconditioning has been developed for resistive MHD. Highlights:
 - SCALABILITY: $CPU \sim \mathcal{O}(N \times \Delta t^{-0.7})$
 - WINS OVER EXPLICIT METHODS: CPU speedup ~ 4 in Cartesian coordinates (will be much more in cylindrical/toroidal geometries).
- Future work:
 - 3D proof-of-principle efficiency results in Cartesian.
 - Extend efficiency results to other geometries: MG in curvilinear geometries
 - Incorporate preconditioner in PETSc parallel version.

