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Abstract

We have developed a technique for incorporating a general expression of the gyrovis-
cous force |5, Ramos, 2005] into an implicit solution algorithm for the two-fluid magne-
tohydrodynamic (MHD) equations. We present the results of numerical simulations of
six-field extended-MHD equations in two dimensions, including Braginskii’'s gyroviscous
stress tensor, using triangular finite elements with fifth-order accuracy and continuous
first derivatives (C'-continuity). Our model extends that used by [4, Jardin and Breslau,
2005] by including the evolution of pressure and flow compressibility, in addition to the
inclusion of the gyroviscous force. The use of C''-continuous finite elements allows up to
four differentiations of any field variable, thus enabling the inclusion of the full gyrovis-
cous stress tensor. The effect of this term on wave propagation and Harris-equilibrium

reconnection is demonstrated.
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The Gyroviscous Force

e The gyroviscous term represents the first order finite-Larmor radius (FLR) contribu-

tions to the Braginskii equations [1].
e [t is not dissipative.

e [t becomes important when (3; is (locally) large, such as in the dissipation region in

null-helicity reconnection.

e We use a general expression for the gyroviscous force in the collisionless limit is given
by [1, 5]:
p(0)
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where repeated indices are implicitly summed.

e Particles simulations have shown [2] that F, is balanced by the ion pressure tensor at

the X-point.
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Finite-Element Representation

e [ields are represented as a linear combination of N basis functions v;:

N
gb<€7 77) — 2';1 ,Uz'gbZ(g? 77)
where & and 7 are the local coordinates of the element.

e The weak form of equations are solved. For example,
OV?y OV?y
ot ot

Thus every equation becomes a system of NV equations.

— —VQp — /dA V; = —/dA VZ'VQP.

e The equations can be integrated by parts to move derivatives off of field variables and

onto the trial function. This relaxes the differentiability requirements. For example,

oV? 0
/dAVZ'ZtX:—/dAVZ'VQP = —/dAVV@thXZ/dAVVZVp

Surface terms vanish in the presence of periodic or homogeneous Dirichlet boundary

conditions.
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Weak form of Gyroviscous Force

The weak form of the equation nd,v = —V - II, after integrating by parts, can be written in coordinate-independent

form (omitting the integral symbols):

pors o | (3 (el (V6] 720 +
5 = ogr |+ (1=35) (0. 0], 0) + [U, (4], 9)) — 53l U] (V2 VP2 + 208, [w], 9]) —
K glVB@ ) (Vv x) + (v, V2X) — V3 (v, X)) + (1 + 3|VB—1€2> Vi VX 4+ 2V, i), w]}

vin

.y
(=38 (0 (6 + 1 (1)) — i) (VOITP + 20, [0, )] -
ou  pW
vin— - = om0 =3l (1+3 Eovul? ) v, U] +
+ (i, (X), ) + 55 ([, vl [ (X, ¥) — Plvis [x],¥))
(3 (V26 m) + (6, VP0) = VE0,m) + (14 31585) V2eV2y, + BV, 6], v +
IV2x p(Z)
vin ot - 232 + (U, (vi),¥) + Bi([w Ull, (v ]w)_]2[U7 il ]) —
— (14 3555 (V20 + [ V2 = V20 X)) + 22 (Y20l (4, ©) = VXY, (1], 0))]

Where we have defined the following coordinate-independent functions:
[a7 b] - a/7xb7y - aaybax
[a7 |:b:|7 C] - aamb7yxcay T aaxb,yycv‘r + aaybvmycvx T alvybaxxc,y
[CL? (b]7 C) - a/axb7yxcax + a/7xb,yycay - a/7yb7xxc7x - a7yb7xycvy

(al? (b)7 C) - a/axbvxmcax + aawbaxycﬂ/ + alvybayxc7x + alvybayycay

where a, = da/0x, etc..
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Matrix Representation of 0yv = —V - I

Writing noyv = =V - 11 as:

Lij 0 0 5 oy Rl R? R || ¢;
22 . 21 P22 1pR23 —
0 0 L?f) X R?j.l R?j? joS X

e In general, each element is sixth-order nonlinear. The evaluation of such a term requires

O(NY) operations, where N is the number of trial functions.

e By introducing a few auxiliary fields, we have been able to rewrite each term as a
fourth-order nonlinear term. The equations determining the auxiliary fields are also

fourth-order nonlinear.
e This results in a reduction of operations by a factor of O(N?).
e This does not introduce error of a higher order than the previous truncation error.

e This method works for any C'! finite element.
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We define the following auxiliary variables:

= p!/ B

W = 1y|Vy|

The elements R;; can now be written:

nglziza I(eq + W)

Rif = Gz(lkl iy —

J

RI3 = Gz(jlz? Ii(oy +VVZ )+G'Ejllz2? ]k‘VVl( +C’lelilC)

2, %742
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) + sz}?l)l/} I/Vz@) + Gg;zz)¢km(3)

Ik VVZ(S)
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RZ = G I+ — 2W,V)
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% 3
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v = 3a/B%
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G B;Cy Dy =

p=nl

3) = Vw,xw,y

Vv, B] + [vi, V2 B] = V2[vi, B]) CD

N | —
| =

([C’ (Vi]> B) + [B’ (Vi]’ C)) D
%[07 Bl(Vize —
[C, B(Viey) D

1
5 ((V?wi, B) + (11, V?B) = V*(v;, B) = V*1,V*B) CD

Vigy)D

1
éVQB(Vi’zx — Vi’yy)CD
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Reduced Quintic Finite Element [3]

e The basis 18 functions are 5 degree polynomials
20 ——
vi(&m) = X gi€"n™
where m; and n; are integers between 0 and 5.

¢ ®gjla,b,c, 0) are functions only of the orientation

and shape of the finite-elements, and can be pre-

computed for a static mesh.

» X

e [ields represented on these elements automatically have continuous first derivatives
(C! continuity) across element boundaries. Therefore fields may be differentiated twice

without introducing auxiliary fields.
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Numerical Model %

?Z:—V-nv

OB
ot
g::—vww+JxB—V@—vwm

Ope 2

o =V (pv) = (Vv L VYV Vg = Qa)
op

2
a——V-(pvi)—g(pv-vﬁ—ﬂ-:VVZ-—I—V-(qZ-+qe))+

J D Pe
Py, R
n (VP 3n vt 3 )

— -V X E

J=VxB; R=nnd; p=pi+p; Qa=37(p—2p)ve
E+vxB=1(R+JxB-Vp,)

The equations in blue, together with V - v = 0 represent the four-field equations.
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Four Field Results: Convergence

Error vs. At
T T T

WOOE‘ T T T
B 0.01 (At)?

> Fast wave, £=2.0 ]
10" 2 A Fast wave, £=0.0 A <

Error in Phase Velocity

10.0

e With 6 = 0.5, the error scales as (At)?

e For 6 > 0.5, or for larger k, the error scales as At.
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Four Field Linear Dispersion Analysis

For the case where k., = 0, the two right-traveling normal modes are:

Slow Wave Fast Wave
b by
Vo= (4B + K2 — K| vs = (4B + K2 + K.
N 4Bt + K% — K_ N ABY+ K2 + K-
JE —2B? ¢1| —2RB?
L| | -k(AB' T K2 - K.) L| |KAB K2+ K.
Uy 2k B? Uy —2kB?

1
by = (k-B)/(kB); Bi=pif; Ki=k (32 + 4@'(352 - 1))
For parallel propagation, expansion in k reveals an O(;) correction to the whistler wave:

vg = 1 £ ;(1 + B;/2)k + ;(1 — 3i/2)%k* + O(k%)
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Four Field Results: Dispersion

Phase Velocity vs. k
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The code is very accurate at low k. At high k, the discrepancy between the theoretical
result and the numerical result is due to a finite viscosity included in the numerical sim-
ulation, but neglected in the theory. This discrepancy can be made arbitrarily small by

choosing a sufficiently small time step so that viscosity can be reduced.
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Four Field Results: Reconnection

Gyroviscosity appears to increase the rate of reconnection slightly.

0‘357 T T T T
0.30F
0.25F

0.20F

Reconnected Flux

This simulation had a guide field I = 0.5. The magnitude of the gyroviscous force scales
as 172 at the X-point, so the gyroviscous force would be expected to have the greatest

effect in null-helicity reconnection.
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Four Field Results: Reconnection

¢ and v fields at t{); = 27.
¢
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e The simulation shows some shear in the velocity field in the case where the gyroviscous

force has been included.
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Conclusions

e The gyroviscous force causes as much dispersion as the Hall term when G; ~ 50%
e We are successfully able to model the full gyroviscous force in the collisionless regime.

e We are currently testing the eight field linear wave propagation.
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