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Abstract

We have developed a technique for incorporating a general expression of the gyrovis-

cous force [5, Ramos, 2005] into an implicit solution algorithm for the two-fluid magne-

tohydrodynamic (MHD) equations. We present the results of numerical simulations of

six-field extended-MHD equations in two dimensions, including Braginskii’s gyroviscous

stress tensor, using triangular finite elements with fifth-order accuracy and continuous

first derivatives (C1-continuity). Our model extends that used by [4, Jardin and Breslau,

2005] by including the evolution of pressure and flow compressibility, in addition to the

inclusion of the gyroviscous force. The use of C1-continuous finite elements allows up to

four differentiations of any field variable, thus enabling the inclusion of the full gyrovis-

cous stress tensor. The effect of this term on wave propagation and Harris-equilibrium

reconnection is demonstrated.
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The Gyroviscous Force

• The gyroviscous term represents the first order finite-Larmor radius (FLR) contribu-

tions to the Braginskii equations [1].

• It is not dissipative.

• It becomes important when βi is (locally) large, such as in the dissipation region in

null-helicity reconnection.

• We use a general expression for the gyroviscous force in the collisionless limit is given

by [1, 5]:

Πij =
p(i)
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where repeated indices are implicitly summed.

• Particles simulations have shown [2] that Ez is balanced by the ion pressure tensor at

the X-point.
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Finite-Element Representation

• Fields are represented as a linear combination of N basis functions νi:

φ(ξ, η) =
N
∑

i=1
viφi(ξ, η)

where ξ and η are the local coordinates of the element.

• The weak form of equations are solved. For example,

∂∇2χ

∂t
= −∇2p ⇒

∫

dA νi
∂∇2χ

∂t
= −

∫

dA νi∇
2p.

Thus every equation becomes a system of N equations.

• The equations can be integrated by parts to move derivatives off of field variables and

onto the trial function. This relaxes the differentiability requirements. For example,

∫

dA νi
∂∇2χ

∂t
= −

∫

dA νi∇
2p ⇒ −

∫

dA∇νi ·
∂∇χ

∂t
=

∫

dA∇νi · ∇p

Surface terms vanish in the presence of periodic or homogeneous Dirichlet boundary

conditions.
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Weak form of Gyroviscous Force

The weak form of the equation n∂tv = −∇ · Π, after integrating by parts, can be written in coordinate-independent

form (omitting the integral symbols):

νin
∂∇2φ
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Where we have defined the following coordinate-independent functions:

[a, b] = a,xb,y − a,yb,x

[a, [b], c] = a,xb,yxc,y − a,xb,yyc,x + a,yb,xyc,x − a,yb,xxc,y

[a, (b], c) = a,xb,yxc,x + a,xb,yyc,y − a,yb,xxc,x − a,yb,xyc,y

(a, (b), c) = a,xb,xxc,x + a,xb,xyc,y + a,yb,yxc,x + a,yb,yyc,y

where a,x = ∂a/∂x, etc..
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Matrix Representation of ∂tv = −∇ · Π

Writing n∂tv = −∇ · Π as:
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• In general, each element is sixth-order nonlinear. The evaluation of such a term requires

O(N 6) operations, where N is the number of trial functions.

• By introducing a few auxiliary fields, we have been able to rewrite each term as a

fourth-order nonlinear term. The equations determining the auxiliary fields are also

fourth-order nonlinear.

• This results in a reduction of operations by a factor of O(N 2).

• This does not introduce error of a higher order than the previous truncation error.

• This method works for any C1 finite element.
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Matrix Representation of ∂tv = −∇ · Π

We define the following auxiliary variables:

α = p(i)/B2; γ = 3α/B2; µ = γI2

W (1) = 1
2γ|∇ψ|

2; W (2) = 1
2γ(ψ

2
,x − ψ2

,y); W (3) = γψ,xψ,y

The elements Rij can now be written:

R11
ij = G

(11a)
ijkl Ik(αl +W

(1)
l )

R12
ij = G

(12a)
ijkl ψk(αl − µl) +G

(12b)
ijkl ψkW

(2)
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ijkl ψkW
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l
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l
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ijkl ψkαl +G

(23b)
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l
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(3)
l
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Reduced Quintic Finite Element [3]

y

x

θ

ξ

η

c

a
b

• The basis 18 functions are 5th degree polynomials

νj(ξ, η) =
20
∑

i=1
gijξ

miηni

where mi and ni are integers between 0 and 5.

• gij(a, b, c, θ) are functions only of the orientation

and shape of the finite-elements, and can be pre-

computed for a static mesh.

• Fields represented on these elements automatically have continuous first derivatives

(C1 continuity) across element boundaries. Therefore fields may be differentiated twice

without introducing auxiliary fields.
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Numerical Model

∂n

∂t
= −∇ · nv

∂B

∂t
= −∇× E

∂v

∂t
= −v · ∇v + J×B−∇p−∇ · Πi

∂pe
∂t

= −∇ · (pev)−
2

3
(pi∇ · v + Πi : ∇v +∇ · qi −Q∆)

∂p

∂t
= −∇ · (pvi)−

2

3
(p∇ · vi + Πi : ∇vi +∇ · (qi + qe)) +

+
J

n
·




∇pe −
5

3

pe
n
∇n +

2

3
R







J = ∇×B; R = ηnJ; p = pi + pe; Q∆ = 3
me
mi
(p− 2pe)νe

E + v ×B = 1
n (R + J×B−∇pe)

The equations in blue, together with ∇ · v = 0 represent the four-field equations.
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Four Field Results: Convergence

• With θ = 0.5, the error scales as (∆t)2

• For θ > 0.5, or for larger k, the error scales as ∆t.
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Four Field Linear Dispersion Analysis

For the case where kz = 0, the two right-traveling normal modes are:

Slow Wave Fast Wave

vφ =
bk
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bk = (k ·B)/(kB); βi = pi0β; K± = k




B2 ±
1

4
βi(3b

2
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For parallel propagation, expansion in k reveals an O(βi) correction to the whistler wave:

vφ‖ = 1±
1

2
(1 + βi/2)k +

1

8
(1− βi/2)

2k2 +O(k3)
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Four Field Results: Dispersion

The code is very accurate at low k. At high k, the discrepancy between the theoretical

result and the numerical result is due to a finite viscosity included in the numerical sim-

ulation, but neglected in the theory. This discrepancy can be made arbitrarily small by

choosing a sufficiently small time step so that viscosity can be reduced.
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Four Field Results: Reconnection

Gyroviscosity appears to increase the rate of reconnection slightly.

This simulation had a guide field I = 0.5. The magnitude of the gyroviscous force scales

as I−2 at the X-point, so the gyroviscous force would be expected to have the greatest

effect in null-helicity reconnection.
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Four Field Results: Reconnection

φ and ψ fields at tΩi = 27.

βi = 0.0 βi = 1.0

• The simulation shows some shear in the velocity field in the case where the gyroviscous

force has been included.
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Conclusions

• The gyroviscous force causes as much dispersion as the Hall term when βi ∼ 50%

• We are successfully able to model the full gyroviscous force in the collisionless regime.

• We are currently testing the eight field linear wave propagation.
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