Hybrid Simulations of Alpha Particle Effects on MHD Modes in ITER

Guoyong Fu

Princeton Plasma Physics Laboratory

The 2005 American Physics Society meeting, DPP, Nov. 24-28, 2005

Outline

- Introduction
- M3D code: hybrid model
- Recent highlights
- Internal kink, fishbone and TAE in ITER
- Summary

Introduction

- We investigate stability of internal kink, fishbone and TAE in ITER by particle/MHD hybrid simulations;
- Our main tool, M3D, is a 3D global nonlinear extended MHD code.

M3D code

M3D is an extended-MHD (XMHD) code which has multi-level of physics:

Resistive MHD; Two fluids; Particle/MHD hybrid;

M3D XMHD Model

 $\rho \frac{d\mathbf{v}}{dt} + \rho (\mathbf{v}_{\mathbf{i}}^{\star} \cdot \nabla) \mathbf{v}_{\perp} = -\nabla P - \nabla \cdot \mathbf{P}_{\mathbf{h}} + \mathbf{J} \times \mathbf{B} - \mathbf{b} \cdot \nabla \cdot \Pi_{\mathbf{i}}$

$$\mathbf{J}=
abla imes \mathbf{B}, \qquad \quad rac{\partial \mathbf{B}}{\partial t}=-
abla imes \mathbf{E}$$

 $\mathbf{E} + \mathbf{v} \times \mathbf{B} = \eta \mathbf{J} - \nabla_{\parallel} P_e / en - \mathbf{b} \cdot \nabla \cdot \Pi_e$

$$\partial P/\partial t + \mathbf{v} \cdot P = -\gamma P \nabla \cdot \mathbf{v} + \dots$$

 $\partial P_e/\partial t + \mathbf{v} \cdot P_e = -\gamma P_e \nabla \cdot \mathbf{v} + \dots$

• Pressure tensor

$$\mathbf{P}_{h} = P_{\perp}\mathbf{I} + (P_{\parallel} - P_{\perp})\mathbf{b}\mathbf{b}$$
 $f = \sum_{i} \delta(\mathbf{R} - \mathbf{R}_{i})\delta(v_{\parallel} - v_{\parallel,i})\delta(\mu - \mu_{i})$

• Gyrokinetic Equations

$$\frac{d\mathbf{R}}{dt} = \frac{1}{B^{\star\star}} \bigg[v_{\parallel} (\mathbf{B}^{\star} - \mathbf{b_0} \times (\langle \mathbf{E} \rangle - \frac{1}{q} \mu \nabla (B_0 + \langle \delta B \rangle)) \bigg]$$

$$m\frac{dv_{\parallel}}{dt} = \frac{q}{B^{\star\star}} \mathbf{B}^{\star} \cdot (\langle \mathbf{E} \rangle - \frac{1}{q} \mu \nabla (B_0 + \langle \delta B \rangle))$$

$$\mathbf{B}^{\star} = \mathbf{B}_{\mathbf{0}} + \langle \delta \mathbf{B} \rangle + \frac{mv_{\parallel}}{q} \nabla \times \mathbf{b}_{\mathbf{0}}, \quad B^{\star \star} = \mathbf{B}^{\star} \cdot \mathbf{b}_{\mathbf{0}}$$

M3D agrees with NOVA2 code

Excitation of Fishbone at high β_h

Mode Structure: Ideal Kink v.s. Fishbone

As flattening region of distribution function increases, the mode frequency chirps down.

MHD nonlinearity changes mode structure significantly

Linear MHD

Nonlinear MHD

M3D Nonlinear hybrid simulations of beam-driven modes in NSTX shows a bursting n=2 TAE as the mode moves out radially.

t=0.0

t=336

G.Y. Fu et al., IAEA Fusion Energy conference. 2004

Alpha Particle Stabilization of Internal Kink Mode for ITER: Internal Kink Mode Structure

 $\beta_{\alpha}=0.0$

$$\beta_{\alpha}=1.0\%$$

Plasma shaping reduces alpha particle stabilization significantly

The fishbone mode is calculated to be stable in ITER

Thermal ion kinetic effects are stabilizing

- M3D can also treat thermal ions as particles
- For an ITER case, the internal kink mode growth rate is reduced by half due to thermal ion kinetic effects.

n=3 TAE in ITER

q(0)=1.4mode peaks at q=1.5

Summary

- Comprehensive hybrid simulations have been carried out to investigate kinetic effects of alpha particles and thermal ions on internal kink and TAE.
- Elongation of ITER reduces the alpha particle stabilization of internal kink mode
- Thermal ion kinetic effects are strongly stabilizing for internal kink
- Fishbone is found to be stable in ITER.
- Initial results show an alpha-driven n=3 TAE in ITER.