# Parallel kinetic closures for NTM studies

E. D. Held, J.-Y. Ji, M. Addae-Kagyah, J. J. James, and M. Sharma

eheld@cc.usu.edu

Utah State University



## Outline

- Approximate CEL drift kinetic equation
- Collision operator and moment expansion
- Test problem for Sptizer resistivity
- NTM issues

## Close fluid equations with kinetically derived $\vec{q}$ and $\Pi$ .

Species evolution equations and closure moments for five moment model:

$$\frac{\partial n}{\partial t} + \vec{\nabla} \cdot n\vec{u} = 0 \quad \to \text{density}$$

$$mn\left(\frac{\partial}{\partial t} + \vec{u} \cdot \vec{\nabla}\right)\vec{u} = en(\vec{E} + \frac{1}{c}\vec{u} \times \vec{B}) - \vec{\nabla}p - \underline{\vec{\nabla}} \cdot \mathbf{\Pi} + \vec{R} \quad \to \text{flow}$$

$$\frac{3}{2}n\left(\frac{\partial}{\partial t} + \vec{u}\cdot\vec{\nabla}\right)T = -p\vec{\nabla}\cdot\vec{u} - \underline{\mathbf{\Pi}:}\vec{\nabla}\underline{\vec{u}} - \underline{\vec{\nabla}\cdot\vec{q}} + Q \quad \rightarrow \text{temperature}$$

$$\underbrace{\vec{q} \equiv \int d^3 v' \frac{1}{2} m v'^2 \vec{v}' f}_{\text{heat flow}} \qquad \underbrace{\mathbf{\Pi} \equiv \int d^3 v' m [\vec{v}' \vec{v}' - \frac{v'^2}{3} \mathbf{I}] f}_{\text{stress tensor}}.$$

# Changing magnetic topology results in large $q_{\parallel}$ .

Particles see T perturbations of scale length,  $L_T$ , which is comparable to the collision length,  $L_{\nu}$ .



### Nonlocal closures involve multiple parallel scale lengths.

$$\begin{array}{l} \bullet \quad L_T \equiv (\nabla_{\parallel} \ln T)^{-1} \\ L_{\nu} \equiv v_{th} / \nu_0 \quad \Rightarrow \quad \underbrace{L_T \sim L_{\nu} \sim 100m >> l}_{l \equiv (\nabla_{\parallel} \ln B)^{-1}} \quad \underbrace{L_T \sim L_{\nu} \sim 100m >> l}_{\text{moderately collisional}} \quad (T = 1 \text{ keV}, n = 10^{20} m^{-3}) \end{array}$$



## Take Chapman-Enskog-like approach to derive closures.

Chapman and Enskog proposed following form for f: \*

$$f = f_M + F = \underbrace{n(\frac{m}{2\pi T})^{\frac{3}{2}} \exp\left(-\frac{mv'^2}{2T}\right)}_{\text{demonstrated}} + \underbrace{F(\vec{x}, \vec{v}, t)}_{\text{demonstrated}}.$$

dynamic Maxwellian kinetic distortion

Use fluid moment equations to rewrite  $df_M/dt$  in full kinetic equation

$$\frac{dF}{dt} - C(F + f_M) = -\frac{df_M}{dt} = -(\text{CEL}).$$

Assume gyrofrequency,  $\Omega$ , greater than other frequencies  $\partial/\partial t/\Omega \sim \delta$ .

• Gyro-average using  $(\Omega \oint d\gamma/2\pi)$  to derive order  $\delta$  constraint equation:

$$\left\langle L(\bar{F}+\tilde{F})\right\rangle - \left\langle C(\bar{F}+\tilde{F}+f_M)\right\rangle = -\left\langle \text{CEL}\right\rangle,$$

where  $L = d/dt - \Omega \partial/\partial \gamma$ .

<sup>&</sup>lt;sup>a</sup>S. Chapman and T. G. Cowling, *The Mathematical Theory of Non-Uniform Gases* (Cambridge University Press, Cambridge, 1939).

# Approximate $\overline{F} + \widetilde{F}$ with $\overline{F}$ in constraint equation.

• Order  $\vec{u}/v_{th}$  small so

$$f_M \approx f_M(n(\vec{x}, t), T(\vec{x}, t)) \left[ 1 + \frac{2}{v_{th}^2} \vec{v} \cdot \vec{u} \right]$$

**P** Resultant approximate  $O(\delta)$  equation is:

$$\begin{split} \left[\frac{\partial}{\partial t} + \vec{v}_{\parallel} \cdot \vec{\nabla} - \frac{\mu}{B} \frac{\partial B}{\partial t} \frac{\partial}{\partial \mu} + q \vec{v}_{\parallel} \cdot \vec{E} \frac{\partial}{\partial \epsilon}\right] \vec{F} - C(f_M + \vec{F}) = \\ - \frac{m}{T} (v_{\parallel}^2 - \frac{v_{\perp}^2}{2}) (\hat{\mathbf{b}}\hat{\mathbf{b}} - \frac{\mathbf{I}}{3}) : \vec{\nabla} \vec{u} f_M \\ + \vec{v}_{\parallel} \cdot \left(\vec{\nabla} \cdot \mathbf{\Pi} - \vec{R}\right) \frac{f_M}{p} \\ + L_1^{1/2} (\vec{\nabla} \cdot \vec{q} - \tilde{Q}) f_M - L_1^{3/2} \vec{v}_{\parallel} \cdot \vec{\nabla} T \frac{f_M}{T}. \end{split}$$

#### Use novel treatment for linearized collision operators.

Plan to invert Lorentz scattering terms but use moment approach for the remainder of the operator.

$$C_{\rm e} = C_{\rm e}^{-} + (L_{\rm ee} + L_{\rm ei})F_{\rm e}, \ C_{\rm e}^{-} \approx C_{\rm Mei}^{(1)} + C_{\rm Fee}^{-(1)}$$

where

$$L_s{}^{s'} = \frac{\Gamma_{ss'}}{2} \frac{G_{s',v}^{(0)}}{v^3} \frac{\partial}{\partial(\frac{v_{\parallel}}{v})} (1 - (\frac{v_{\parallel}}{v})^2) \frac{\partial}{\partial(\frac{v_{\parallel}}{v})}$$

with

$$G_{s',v}^{(0)} = n_{0s'} \left[ (\eta - \frac{1}{2\eta}) \frac{E}{\eta} + \frac{1}{2\eta} E' \right]$$

and using a small mass ratio approximation

$$C_{\text{Mei}}^{(1)} \approx 2f_{\text{Me}}^{(0)} \frac{\Gamma_{\text{ei}} n_{0\text{i}} C_1(\xi)}{v_{\text{te}}^4 \zeta^2} (u_{0\parallel\text{i}} - u_{0\parallel\text{e}}),$$

where  $C_1(\xi)$  is an eigenfunction of  $L_{ss'}$ .

### Use novel treatment for linearized collision operators..

Speed diffusion and drag terms handled with moment expansion to provide accuracy in the collisional limit.

$$\bar{F} = f_M \sum_{n=1}^N \sum_{m=0}^M \mathbf{a}_{nm} C_n(\xi) L_m^{((n+2)/2)}(v/v_{th}),$$

where  $C_n$ 's and  $L_m^{((n+2)/2)}$  are pitch-angle eigenfunctions and Laguerre polynomials, respectively.

Resultant operator looks like:

$$C_{\text{Fee}}^{-(1)} = f_{\text{Me}}^{(0)} \frac{\Gamma_{\text{ee}} n_{0e}}{v_{\text{te}}^3} [\frac{2C_1(\xi)}{v_{\text{te}}} (u_{1\parallel e} \nu_{u_1} + u_{2\parallel e} \nu_{u_2} + \cdots) + \frac{2C_2(\xi)}{3n_{0e}T_{0e}} (\pi_{0\parallel e} \nu_{\pi_0} + \pi_{1\parallel e} \nu_{\pi_1} + \cdots) + \cdots],$$

where, for example, when  $v_{\parallel}/v=\xi$ 

$$\nu_{u_1}^-(\zeta) = \left(-\frac{5}{4\zeta^3} - \frac{7}{\zeta} + 3\zeta\right)\frac{E}{\zeta} + \left(\frac{5}{4\zeta^3} + \frac{19}{2\zeta}\right)E'.$$



where



# Apply collision operator in calculation of Sptizer resistivity.

- For Spitzer problem can replace electron collisional friction force,  $R_{\parallel}$ , with  $en_eE_{\parallel}$  in CEL drives.
  - 2 Spitzer 3 1 moments  $\rightarrow$ coefficient  $\downarrow$ flow 2.326 1.992 1.986 1.96 heat flow -.544 -.545 energy-weighted heat flow -.0114
  - Results for 1, 2, and 3-moment model approach:

## Solve system of hyperbolic equations.

Final form of the equations is

$$\mathbf{I}\frac{\partial \vec{F}}{\partial t} + \mathbf{A}(v\frac{\partial}{\partial L} + \frac{qE_{\parallel}}{m}\frac{\partial}{\partial v})\vec{F} + \mathbf{B}\nu\vec{F} = \vec{g}.$$

- Find eigenvectors of **A** and expand  $\vec{F}$  in this basis to identify characteristics,  $\vec{F} = \mathbf{W}\vec{f}$ .
- Diagonalize by approximating coupled terms in  $\mathbf{W}^{-1}\mathbf{B}\mathbf{W}\vec{f}$  again with moment expansion.
- Integrate separated PDE's along charactersitics to determine  $f_i$ 's.
- Take desired closure moments and write as coupled system of integral equations or solve equations for  $f_i$ 's via "particle" approach.

# **Remaining Issues**

 Effect of axisymmetric toroidal geometry Cordey eigenfunctions.
Trapped and passing particle distributions.
Form of coupled hyperbolic equations.

Numerical implementation

Premliminary form exists in NIMROD.