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Outline

Approximate CEL drift kinetic equation

Collision operator and moment expansion

Test problem for Sptizer resistivity

NTM issues
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Close fluid equations with kinetically derived

��� and .

Species evolution equations and closure moments for five moment model:
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Changing magnetic topology results in large ��� .
Particles see

0

perturbations of scale length,

��� , which is comparable to the

collision length,

��� .
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Nonlocal closures involve multiple parallel scale lengths.
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Take Chapman-Enskog-like approach to derive closures.
Chapman and Enskog proposed following form for

C

: a
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Use fluid moment equations to rewrite

;C � � ;�

in full kinetic equation
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Assume gyrofrequency,

�

, greater than other frequencies

� � �� � � � �

.

Gyro-average using

� � � ;�� � /�� #
to derive order

�

constraint equation:
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where

� � ; � ;� $ � � � � � .

aS. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge,

1939).
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Approximate

� �

with

�

in constraint equation.

Order

�  �= � � small so
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Use novel treatment for linearized collision operators.
Plan to invert Lorentz scattering terms but use moment approach for the

remainder of the operator.
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and using a small mass ratio approximation
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is an eigenfunction of

� � � @ .
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Use novel treatment for linearized collision operators..
Speed diffusion and drag terms handled with moment expansion to provide

accuracy in the collisional limit.
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where

 �’s and

� � � ��A � �A �

� are pitch-angle eigenfunctions and Laguerre
polynomials, respectively.

Resultant operator looks like:
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Simple” ion operator in large mass ratio approximation.@

Ion operator:

where

For electron and ion Lorentz scattering terms use

Keeping terms provides for nearly collisionless response.
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Apply collision operator in calculation of Sptizer resistivity.

For Spitzer problem can replace electron collisional friction force,
)� , with

� �
�

�� in CEL drives.

Results for 1, 2, and 3-moment model approach:

moments � 1 2 3 Spitzer

coefficient

�

flow 2.326 1.992 1.986 1.96

heat flow -.544 -.545

energy-weighted heat flow -.0114
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Solve system of hyperbolic equations.

Final form of the equations is

K � ��
�� � � �= �
� �

� 2 ��
�

�
�=
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Find eigenvectors of

�

and expand

��

in this basis to identify characteristics,�� � � �C

.

Diagonalize by approximating coupled terms in
� � � � � �C

again with

moment expansion.

Integrate separated PDE’s along charactersitics to determine

C�� ’s.

Take desired closure moments and write as coupled system of integral
equations or solve equations for

C� ’s via "particle" approach.
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Remaining Issues

Effect of axisymmetric toroidal geometry

Cordey eigenfunctions.

Trapped and passing particle distributions.

Form of coupled hyperbolic equations.

Numerical implementation

Premliminary form exists in NIMROD.
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