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Introduction
• Modeling the evolution of MHD-like 

instabilities poses many challenges.
– Modes extend over the device scale and 

are therefore sensitive to geometry.
– Nonlinear effects are required to 

understand how magnetic topology and 
confinement are affected.

– There are extreme anisotropies with 
respect to the direction of the evolving 
magnetic field.

– The time-scales for wave propagation 
and nonlinear evolution are separated 
by many orders of magnitude.

NIMROD simulation of high-β
disruption in DIII-D.  [Courtesy 

of Scott Kruger, Tech-X]



Introduction (continued)
• Two-fluid contributions, such as the Hall electric field and 

gyroviscosity, are known to be important for macroscopic 
dynamics.
– Drift effects lead to rotation and change stability thresholds.
– Magnetic reconnection changes qualitatively with two-fluid 

effects.
– Nonlinear Hall contributions can produce dynamo effects.

• The ranges of temporal and spatial scales in two-fluid 
computations are yet more extreme than with resistive MHD.
– For resistive MHD, the NIMROD code uses a semi-implicit 

method with flow velocity staggered in time from magnetic 
field and pressure [JCP 195, 355 (2004)].

– Analyses and test results for the two-fluid system have led us 
to a leapfrog scheme with implicit steps.

– A suite of test cases is required to benchmark the algorithm 
and understand its properties.



Evolution Equations
• Like other algorithms for MHD and extended-MHD, we cast the 
evolution equations into a single-fluid form.
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The relations used for E, Π, and qα determine which theoretical 
model is solved.  [resistive MHD, two-fluid, kinetic effects, etc.]
• Collisional closure relations have limited applicability, but they provide 
dissipation that is necessary for nonlinear simulations if the algorithm is not 
inherently dissipative.
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• Closure terms with local gradients may be treated implicitly and can be 
used in semi-implicit advances with nonlocal closures.  [Held, PoP 11, 
2419 (2004)]  
• They may also prove useful for moment-implicit simulation-particle 
closures.



Numerical Algorithm
The NIMROD code has had two-fluid terms available in its Ohm’s 
law, but the advance did not allow time-steps significantly larger 
than an explicit algorithm.

• Nonlinear computations of global extended-MHD activity in 
high-temperature plasmas are not possible if ∆t is so restricted.

• We have considered / are considering different possible 
algorithms for the two-fluid system:
• A semi-implicit advance of the magnetic field using a self-

adjoint 4th-order spatial differential operator
• A new implicit leapfrog algorithm
• Implicit time-centering of the entire system of equations



A self-adjoint fourth-order differential operator has been 
recommended for the semi-implicit algorithm. [Harned and Mikic, 
JCP 83, 1 (1989)]

• The time-advance is similar to the semi-implicit MHD algorithm, but a  
second semi-implicit operator is added for the Hall terms.
Neglecting advection, dissipation, and the separate n and T advances for clarity:
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• As with advection, predictor/corrector steps are applied in the magnetic advance 
to provide forward centering of B* and J* in the Hall term.

• The implementation in NIMROD uses an auxiliary field, so that all terms in the 
weak form are integrable with C0 elements. 



The implicit leapfrog algorithm also has temporally staggered data, 
but linear terms are centered in the magnetic-field step.
• This approach was motivated by the successful combination of the semi-implicit 
algorithm and time-centered advection (reported in 
http://www.cptc.wisc.edu/sovinec_research/meetings/sovinec_aps03poster.pdf)
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• The implicit Hall terms are linearized from the beginning of a time-step, 
resulting in second-order differential operators that are not self-adjoint.
• The advantage over full implicit time-centering is that the resulting algebraic 
systems are smaller.
• Full implicit time-centering has the best numerical properties, however. 



Numerical Analysis
The normalizations and post-processing conventions are:
• Time is normalized with the ion cyclotron frequency (Ωi).

• Wavenumbers are normalized with the ion skin-depth (c/ωi).

• In these units, 

• For numerical analysis, the eigenvalue of the time-step 
operation is reported as 

||,1 kkcv whistler
i

i
A =⇒

Ω
= ω

ω

( )
( )

( )∗

−

∆
=

⎟
⎠
⎞

⎜
⎝
⎛ −

∆
=

λλω

λ
λω

ln
2
1

Re
Imtan1 1

t

t

i

r ( ) ( )n
jj

n
j xx λ→+1for

• θ is the angle between k and B0.



EXAMPLE: Numerical Leapfrog for MHD Only
Im(ω)>0 indicates numerical instability.

θ =0.04π ∆t =1, cs
2/ vA

2=0.1. θ =0.46π
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EXAMPLE: Semi-Implicit MHD Leapfrog
Numerical dispersion provides stability at high-k.

θ =0.04π ∆t =1, cs
2/ vA

2=0.1. θ =0.46π
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NIMROD tests and numerical analysis show that the semi-
implicit Hall advance is stable for EMHD.

f=1, s=0.25
∆t =1, cs

2/ vA
2=0, f is P/C centering, and s is SI coefficient. (θ=0)
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Tests indicate numerical instability when the algorithm is 
applied to HMHD, however.  Analysis also finds instability.

∆t =1, cs
2/ vA

2=0 (θ=0)
• The Hall advance of B is time-split from the MHD advance of B, 
and the Hall semi-implicit operator is applied to both predictor and 
corrector steps.
• Note that with the same parameters, SI MHD and SI EMHD are 
stable.
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Applying the 4-th order operator to the corrector step only 
(with an unsplit B advance) initially looked promising. 

f=0.5, sHall=0.25, ∆t =1, cs
2/ vA

2=0.1 (θ=0.04π)

• Here, the Hall semi-implicit operator is only applied to the 
corrector step.
• Unfortunately, the NIMROD implementation found another numerical 
stability problem when applied to inhomogeneous equilibria.
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The leapfrog with implicit magnetic advance is stable for 
basic HMHD waves.
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θ =0.04π ∆t =1, cs
2/ vA

2=0.1. θ =0.46π
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• Here, analytical dispersion relations are shown with cs
2/ vA

2=0.1 and V0=vA/3.
• J0 is added as a separate drift flow at vA/2, retaining homogeneous B0.
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Gyroviscosity, V0, and J0 have been added to the analyses.

No G.V.

θ =0.46πθ =0.04π

With 
G.V.



• ∆t=1, cs
2/ vA

2=0.1, V0=vA/3, and Vdrift =vA/2.

No G.V.

θ =0.46πθ =0.04π

With 
G.V.
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The implicit leapfrog is unconditionally stable with gyroviscosity, 
advection, and J0 if they are implicitly centered in respective advances.



• ∆t=1, cs
2/ vA

2=0.1, V0=vA/3, and Vdrift =0.
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θ =0.04π

Predictor-corrector advection is unstable with J0 and is conditionally 
stable with J0=0.

θ =0.46π
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New Leapfrog
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Returning to HMHD without G.V. and flow, we find somewhat more 
numerical dispersion in slow waves (for ω∆t >0.5) for leapfrog than 
implicit time-centering.

θ =0.04π



NIMROD Implementation
• The new leapfrog scheme is being implemented in NIMROD.

• Linear terms for Hall, gyroviscosity, and thermal drifts for 
Ti≠Te have been added.

• All of these terms require solution of non-Hermitian matrices.

• For 2D problems, we are able to solve non-Hermitian matrices 
using to the SuperLU software library.

• For nonlinear 3D problems, we will use a matrix-free iterative 
approach; generating 3D matrix elements with the Fourier 
representation of the toroidal angle is not practical.

• Parallel software for performing matrix-free system solves is 
available (PETSc, for example) and will be implemented.



Modeling: Time-advance algorithms (continued)
• A full implicit leapfrog separates pressure evolution into number density 
and temperature equations.
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• The T and B advances can be predicted and corrected to center all 
coefficients in time.



Test Results
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• Using HMHD to solve a 0-beta tearing 
mode benchmark for resistive MHD leads 
to no rotation (good) and a slightly 
increased growth rate at a Hall parameter 
of 0.2.
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• The three lowest−∆t results indicate a 
convergence rate of 2.0.  Dissipation 
coefficients are time-centered.

• Two-fluid tearing calculations in slab 
geometry are shown in poster LP1.00113 
by H. Tian.



A finite-beta version of the cylindrical tearing test shows rotation 
and a reduced growth rate.

• Mode parity changes when the 
equilibrium has finite pressure.
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• Rotation is apparent from the eigenfunction’s flow 
velocity field.

• At S=105, we find:
γτA=1.2×10-2 for MHD
γτA=8.6×10-3 and ΩτA=2.3×10-2 HMHD
γτA=4.3×10-3 and ΩτA=2.6×10-2 HMHD+GV



Results on the GEM Challenge Problem
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Reconnected magnetic flux as a function of time.

• Since NIMROD does not have shock-capturing capabilities, dissipation is used 
to maintain some degree of smoothness.  With a 72×96 mesh of biquadratic
elements, Pm=3 is required to achieve saturation.

• This comparison shows recent NIMROD Hall-MHD and resistive MHD results 
together with results published in Birn, Drake et al., JGR (2001).

• This problem has no guide field, and reconnection generates sonic flows well 
into the nonlinear phase of the 2-fluid computations.

• Resistivity η = 0.005

• NIMROD simulations have

• χiso = 0.005

• D = 0.005

• 0.005 ≤ ν ≤ 0.015



The NIMROD Hall-MHD computation with Pm=1 shows 
important characteristics of two-fluid reconnection.
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The characteristic results from t=23 Ωi
-1 are the open geometry of 

the reconnecting magnetic flux (left) and the quadrupole out-of-
plane magnetic field (right).

• See the poster LP1.00113 (Tian) for nonlinear results on equilibria 
with a large guide field.



Out-of-plane current density and poloidal flux at t=23-24 Ωi
-1 

show sensitivity to viscosity.
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Conclusions
• Algorithms with a semi-implicit operator for stabilizing two-fluid 
waves (including whistler waves) are numerically unstable in the full 
HMHD system; though, they are stable for EMHD alone.  This finding 
may be at odds with what is published in [Harned and Mikic], however.

• A new leap-frog based scheme with an implicit magnetic field 
advance has been proposed, analyzed, and implemented in NIMROD. 
It is numerically stable for waves and has been exercised on the GEM 
Challenge problem.  Accuracy appears to be close to a fully centered 
advance, and the algebraic systems should be easier to solve.

• We welcome recommendations for two-fluid benchmark computations 
that have analytical solutions.

• This presentation will be posted on nimrodteam.org and 
www.cptc.wisc.edu/sovinec_research.
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