On elliptic solves for 3D XMHD

L. Chacón

Los Alamos National Laboratory P.O. Box 1663, Los Alamos, NM 87545

> CEMM MEETING OCT. 29TH, 2006 PHILADELPHIA, PA USA

> > Reports of interest

- 1. Simulation-Based Engineering Science (SBES): Revolutionizing Engineering Science through Simulation, Feb. 2006, NSF Report
- 2. Fusion Simulation Project: Integrated Simulation & Optimization of Fusion Systems, Dec. 01, FESAC ISOFS Subcommittee Report

Outline

- Motivation
- Parabolization: key for SCALABILITY
- Application: Resistive 3D MHD
- Application: Hall MHD
- Implicit + AMR: proof of principle

Challenges in fusion simulation: "The tyranny of scales"

(a) Time scales in fusion plasmas (FSP report) (b) Length scales in a typical fu-

sion plasma (Tang, Phys. Plasmas, 9 (5), 2002)

"The tyranny of scales will not be simply defeated by building bigger and faster computers" (SBES report, p. 30)

Requirements and impact of algorithms?

(c) Computational requirements for fusion plasma integrated simulation (FSP report)

(d) Impact of algorithms in gas combustion effective FLOPS (SBES report)

"Faster and more cost-effective hardware is a strong driver for simulation-based engineering. However, algorithmic improvements have been far more important." (SBES report, p. 50)

Algorithmic challenges in XMHD (I)

- XMHD is a strongly hyperbolic PDE system.
- Numerically, XMHD is a nonlinear algebraic system of very stiff equations:
	- **Elliptic stiffness (diffusion): Jacobian condition number** $\sim \frac{\Delta t D}{\Delta x^2}$
	- **–** Hyperbolic stiffness (linear and dispersive waves): Jacobian condition number ∼ $\Delta t\,\omega_{fast} \sim \frac{\Delta t}{\Delta t_{CFL}}$ $\gg 1$
- An implicit integration of XMHD may be advantageous to step over wave phenomena and get to the dynamical time scale of interest.

Implicit methods require inversion of very large, sparse matrices!

Algorithmic challenges in XMHD (II)

- Brute-force algorithms will not be able to cover the span between disparate time/length scales, regardless of computer power (gas combustion example).
- Key algorithmic feature: SCALABILITY!
	- **–** Minimize number of degrees of freedom (grid points) without sacrificing spatial resolution: spatial adaptivity
	- **–** Be able to follow lowest frequency time scales (application dependent): implicit time stepping

It is our contention that fully implicit, spatially adaptive methods are essential for scalability, and thus an integral part of a predictive plasma simulation tool!

Scalable algorithm: CPU $\sim \mathcal{O}(N/np)$, N is # dof, np is # procs

Alternatives for inversion algorithms: NOT SCALABLE

• Explicit (trivial option, here for comparison):

$$
CPU \sim \frac{T_{max}}{\Delta t_{CFL}} \times \frac{N}{np} \sim \mathcal{O}(N^{1+\alpha/d}/np) ;
$$

d is # dimensions, $\alpha = 1, 2$ for linear, dispersive waves

- Implicit (requires matrix inversion). Naive options are NOT scalable:
	- **–** Direct methods: good parallelization, but do not scale with problem size:

$$
CPU \sim \mathcal{O}\left(\frac{N^{(3-2/d)}}{np^{\beta}}\right) , \ \beta \gtrsim 1
$$

– Iterative methods (unpreconditioned Krylov, stationary, etc.): good paralellization, but VERY slow convergence:

$$
CPU \sim \mathcal{O}\left(\frac{N^{\alpha}}{np^{\beta}}\right) \enspace , \enspace \alpha > 1 \enspace ; \enspace \beta \gtrsim 1
$$

Scalingwise, direct solver is WORSE than explicit for $d>1+\frac{\alpha}{2}\approx 2$

Alternatives for inversion algorithms: SCALABLE

- Scalable matrix inversion methods require MULTILEVEL approaches (divide and conquer in wavenumbers):
	- **–** Direct-solve substructuring (X. Z. Tang).
	- **–** FETI-DP (Glasser's talk).
	- **–** Multilevel iterative (e.g., classical MG, algebraic MG).

$$
CPU \sim \mathcal{O}\left(\frac{N\ \text{log}(N)}{np^\beta}\right) \ \ , \ \ \beta \gtrsim 1
$$

- Both approaches are being pursued in T-15 at LANL!
- This talk focuses on the second approach.
- A fundamental component of iterative ML methods (both classical and algebraic) is the existence of a SMOOTHER (convergent stationary iterative method).

Q: How to ensure the existence of a SMOOTHER for XMHD? A: Parabolization!

Parabolization and Schur complement: an example

• PARABOLIZATION EXAMPLE:

$$
\partial_t u = \partial_x v \ , \ \partial_t v = \partial_x u.
$$

$$
u^{n+1} = u^n + \Delta t \partial_x v^{n+1},
$$

$$
v^{n+1} = v^n + \Delta t \partial_x u^{n+1}.
$$

$$
(I - \Delta t^2 \partial_{xx}) u^{n+1} = u^n + \Delta t \partial_x v^n
$$

• PARABOLIZATION via SCHUR COMPLEMENT:

$$
\left[\begin{array}{cc} D_1 & U \\ L & D_2 \end{array}\right] = \left[\begin{array}{cc} I & UD_2^{-1} \\ 0 & I \end{array}\right] \left[\begin{array}{cc} D_1 - UD_2^{-1}L & 0 \\ 0 & D_2 \end{array}\right] \left[\begin{array}{cc} I & 0 \\ D_2^{-1}L & I \end{array}\right].
$$

Stiff off-diagonal blocks L,U now sit in diagonal via Schur complement $D_1 - U D_2^{-1} L$. The system has been "PARABOLIZED."

$$
D_1 - UD_2^{-1}L = (I - \Delta t^2 \partial_{xx})
$$

How to build a successful fully implicit algorithm for XMHD

- Even if a smoother exists, MG is remarkably temperamental
- Combination of Krylov methods and MG is optimal:
	- **–** MG provides scalability (as a preconditioner)
	- **–** Krylov provides robustness
- We seek to develop a successful algorithm for XMHD based on Newton-Krylov-MG.
- We will start with resistive MHD, and then move to XMHD.
- Finally we will discuss the combination of implicit time stepping with dynamic grid adaptation.

Jacobian-Free Newton-Krylov Methods

- Objective: solve nonlinear system $\vec{G}(\vec{x}^{n+1}) = \vec{0}$ efficiently.
- Converge nonlinear couplings using Newton-Raphson method:
- Jacobian-free implementation:

$$
\left(\frac{\partial\vec{G}}{\partial\vec{x}}\right)_k \vec{y} = J_k \vec{y} = \lim_{\epsilon \to 0} \frac{\vec{G}(\vec{x}_k + \epsilon \vec{y}) - \vec{G}(\vec{x}_k)}{\epsilon}
$$

 $\partial\vec{G}$

 $\overline{}$ \parallel \parallel $\overline{}$ \vert k

 $\delta \vec{x}_k = -\vec{G}(\vec{x}_k)$

 $\partial\vec{x}$

- Krylov method of choice: GMRES (nonsymmetric systems).
- Right preconditioning: solve equivalent Jacobian system for $\delta y = P_k \delta \vec{x}$:

$$
J_k P_k^{-1} \underbrace{P_k \delta \vec{x}}_{\delta \vec{y}} = -\vec{G}_k
$$

APPROXIMATIONS IN PRECONDITIONER DO NOT AFFECT ACCURACY OF CONVERGED SOLUTION; THEY ONLY AFFECT EFFICIENCY!

Implicitresistive MHD solver

Resistive MHD model equations

$$
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0,
$$

$$
\frac{\partial \vec{B}}{\partial t} + \nabla \times \vec{E} = 0,
$$

$$
\frac{\partial (\rho \vec{v})}{\partial t} + \nabla \cdot \left[\rho \vec{v} \vec{v} - \vec{B} \vec{B} - \rho \nu \nabla \vec{v} + \vec{T} (p + \frac{B^2}{2}) \right] = 0,
$$

$$
\frac{\partial T}{\partial t} + \vec{v} \cdot \nabla T + (\gamma - 1) T \nabla \cdot \vec{v} = 0,
$$

- Plasma is assumed polytropic $p \propto n^{\gamma}$.
- Resistive Ohm's law:

$$
\vec{E} = -\vec{v}\times\vec{B} + \eta\nabla\times\vec{B}
$$

Resistive MHD Jacobian block structure

• The linearized resistive MHD model has the following couplings:

 $\delta \rho = L_{\rho}(\delta \rho, \delta \vec{v})$ $\delta T = L_T(\delta T, \delta \vec{v})$ $\delta \vec{B}$ = $L_B(\delta \vec{B}, \delta \vec{v})$ $\delta\vec{v} = L_v(\delta\vec{v}, \delta\vec{B}, \delta\rho, \delta T)$

• Therefore, the Jacobian of the resistive MHD model has the following coupling structure: λ Δ

$$
J\delta \vec{x} = \left[\begin{array}{cccc} D_\rho & 0 & 0 & U_{v\rho} \\ 0 & D_T & 0 & U_{vT} \\ 0 & 0 & D_B & U_{vB} \\ L_{\rho v} & L_{Tv} & L_{Bv} & D_v \end{array} \right] \left(\begin{array}{c} \delta \rho \\ \delta T \\ \delta \vec{B} \\ \delta \vec{v} \end{array} \right)
$$

• Diagonal blocks contain advection-diffusion contributions, and are "easy" to invert using MG techniques. Off diagonal blocks L and U contain all hyperbolic couplings.

PARABOLIZATION: Schur complement formulation

• We consider the block structure:

$$
J\delta \vec{x} = \begin{bmatrix} M & U \\ L & D_v \end{bmatrix} \begin{pmatrix} \delta \vec{y} \\ \delta \vec{v} \end{pmatrix}
$$

$$
\delta \vec{y} = \left(\begin{array}{c}\delta \rho \\ \delta T \\ \delta \vec{B}\end{array}\right) \hspace{3mm}; \hspace{3mm} M = \left(\begin{array}{ccc}D_\rho & 0 & 0 \\ 0 & D_T & 0 \\ 0 & 0 & D_B\end{array}\right)
$$

• M is "easy" to invert (advection-diffusion, MG-friendly).

Schur complement analysis of 2x2 block J yields:

$$
\begin{bmatrix}\nM & U \\
L & D_v\n\end{bmatrix}^{-1} =\n\begin{bmatrix}\nI & 0 \\
-LM^{-1} & I\n\end{bmatrix}\n\begin{bmatrix}\nM^{-1} & 0 \\
0 & P_{Schur}^{-1}\n\end{bmatrix}\n\begin{bmatrix}\nI & -M^{-1}U \\
0 & I\n\end{bmatrix},
$$
\n
$$
P_{Schur} = D_v - LM^{-1}U
$$

- EXACT Jacobian inverse only requires M^{-1} and P^{-1}_{Schur} .
- Schur complement formulation is fundamentally unchanged in Hall MHD!

Physics-based preconditioner (I)

• The Schur complement analysis translates into the following 3-step EXACT inversion algorithm:

$$
\begin{aligned}\n\text{Predictor} & \therefore \delta \vec{y}^* = -M^{-1} G_y \\
\text{Velocity update} & \therefore \delta \vec{v} = P_{Schur}^{-1}[-G_v - L \delta \vec{y}^*], \ P_{Schur} = D_v - LM^{-1} U \\
\text{Corrector} & \therefore \delta \vec{y} = \delta \vec{y}^* - M^{-1} U \delta \vec{v}\n\end{aligned}
$$

• MG treatment of P_{Schur} is impractical due to M^{-1} .

Need suitable simplifications (SEMI-IMPLICIT)!

- We consider the small-flow-limit case: $M^{-1} \approx \Delta t$
- This approximation is equivalent to splitting flow in original equations.

Physics-based preconditioner (II)

• Small flow approximation: $M^{-1} \approx \Delta t$ in steps 2 & 3 of Schur algorithm:

$$
\delta \vec{y}^* = -M^{-1} G_y
$$

\n
$$
\delta \vec{v} \approx P_{SI}^{-1} [-G_v - L \delta \vec{y}^*]; \ P_{SI} = D_v - \Delta t L U
$$

\n
$$
\delta \vec{y} \approx \delta \vec{y}^* - \Delta t U \delta \vec{v}
$$

where:

$$
P_{SI} = \rho^n \left[\overleftrightarrow{I} / \Delta t + \theta (\vec{v}_0 \cdot \nabla \overleftrightarrow{I} + \overleftrightarrow{I} \cdot \nabla \vec{v}_0 - \nu^n \nabla^2 \overleftrightarrow{I}) \right] + \Delta t \theta^2 W (\vec{B}_0, p_0)
$$

$$
W(\vec{B}_0, p_0) = \vec{B}_0 \times \nabla \times \nabla \times \left[\overleftrightarrow{I} \times \vec{B}_0 \right] - \vec{j}_0 \times \nabla \times \left[\overleftrightarrow{I} \times \vec{B}_0 \right] - \nabla \left[\overleftrightarrow{I} \cdot \nabla p_0 + \gamma p_0 \nabla \cdot \overleftrightarrow{I} \right]
$$

- \bullet P_{SI} is block diagonally dominant by construction!
- We employ multigrid methods (MG) to approximately invert P_{SI} and $M: 1 \vee (4,4)$ cycle

Efficiency: ∆t **scaling (2D tearing mode)**

32×32

128×128

Efficiency: grid scaling

$\Delta t \approx 1100 \Delta t_{CFL}$, 10 time steps

Why does GMRES/ Δt decrease with resolution?

Effect of spatial truncation error

Sample 3D results: Screw pinch in 3D

Sample 3D results: 3D KHI

Knoll and Brackbill, Phys. Plasmas 9 (9) 2002

Implicit extended MHD solver

Extended MHD model equations

$$
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0,
$$

$$
\frac{\partial \vec{B}}{\partial t} + \nabla \times \vec{E} = 0,
$$

$$
\frac{\partial (\rho \vec{v})}{\partial t} + \nabla \cdot \left[\rho \vec{v} \vec{v} - \vec{B} \vec{B} - \rho \nu \nabla \vec{v} + \vec{T} (p + \frac{B^2}{2}) \right] = 0,
$$

$$
\frac{\partial T_e}{\partial t} + \vec{v} \cdot \nabla T_e + (\gamma - 1) T_e \nabla \cdot \vec{v} = 0,
$$

- Plasma is assumed polytropic $p \propto n^{\gamma}$.
- We assume cold ion limit: $T_i \ll T_e \Rightarrow \boxed{p \approx p_e}$.
- Generalized Ohm's law:

$$
\vec{E} = -\vec{v} \times \vec{B} + \eta \nabla \times \vec{B} - \frac{d_i}{\rho} (\vec{j} \times \vec{B} - \nabla p_e)
$$

Extended MHD Jacobian block structure

• The linearized extended MHD model has the following couplings:

$$
\delta \rho = L_{\rho}(\delta \rho, \delta \vec{v})
$$

\n
$$
\delta T = L_{T}(\delta T, \delta \vec{v})
$$

\n
$$
\delta \vec{B} = L_{B}(\delta \vec{B}, \delta \vec{v}, \delta \rho, \delta T)
$$

\n
$$
\delta \vec{v} = L_{v}(\delta \vec{v}, \delta \vec{B}, \delta \rho, \delta T)
$$

• Jacobian coupling structure:

$$
J\delta\vec{x} = \left[\begin{array}{cccc} D_{\rho} & 0 & 0 & U_{v\rho} \\ 0 & D_{T} & 0 & U_{vT} \\ L_{\rho B} & L_{TB} & D_{B} & U_{vB} \\ L_{\rho v} & L_{Tv} & L_{Bv} & D_{v} \end{array} \right] \left(\begin{array}{c} \delta\rho \\ \delta T \\ \delta \vec{B} \\ \delta \vec{v} \end{array} \right)
$$

• We have added off-diagonal couplings.

Extended MHD Jacobian block structure (cont.)

• The coupling structure can be substantially simplified if we note $(p \approx p_e)$:

$$
\frac{1}{\rho}(\vec{j} \times \vec{B} - \nabla p_e) \approx \frac{D\vec{v}}{Dt}
$$

and therefore:

$$
\vec{E} \approx -\vec{v} \times \vec{B} + \frac{\eta(T)}{\mu_0} \nabla \times \vec{B} - d_i \frac{D\vec{v}}{Dt}
$$

• This transforms jacobian coupling structure to:

$$
J\delta\vec{x} \approx \left[\begin{array}{cccc} D_{\rho} & 0 & 0 & U_{v\rho} \\ 0 & D_{T} & 0 & U_{vT} \\ 0 & 0 & D_{B} & U_{vB}^{R} + U_{vB}^{H} \\ L_{\rho v} & L_{Tv} & L_{Bv} & D_{v} \end{array}\right] \left(\begin{array}{c} \delta\rho \\ \delta T \\ \delta \vec{B} \\ \delta \vec{v} \end{array}\right)
$$

We can therefore reuse ALL resistive MHD PC framework!

Extended MHD preconditioner

- Use same Schur complement approach.
- M block contains ion scales only! Approximation $M^{-1} \approx \Delta t$ is very good in extended MHD (ion scales do NOT contribute to numerical stiffness).
- \bullet Additional block U_{vB}^H results, after the Schur complement treatment, in systems of the form:

$$
\partial_t \delta \vec{v} - d_i \vec{B_0} \times (\nabla \times \nabla \times \delta \vec{v}) = r h s
$$

- \bullet This system supports dispersive waves $\omega \sim k^2!$
- We have shown analytically that damped JB is a smoother for these systems!

We can use classical MG!

Preliminary efficiency results (2D tearing mode)

 $d_i = 0.05$

1 time step, $\Delta t = 1.0$, V(3,3) cycles, mg_tol=1e-2

Again, GMRES/∆t decreases with resolution!

Effect of spatial truncation error

Residual history vs. GMRES it# with fixed time step Dt=1

GEM Challenge

J. Birn et al., J. Geophys. Res., 106 (A3), p.3715-19 (2001)

Parallel performance with PETSc Toolkit (unpreconditioned)

Implicit-AMR proof of principle

B. Philip, M. Pernice, and L. Chacón, Lecture Notes in Computational Science and Engineering, accepted (2006).

Current-Vorticity Formulation of Reduced Resistive MHD¹

$$
(\partial_t + \mathbf{u} \cdot \nabla - \eta \Delta) J + \Delta E_0 = \mathbf{B} \cdot \nabla \omega + {\Phi, \Psi}
$$

\n
$$
(\partial_t + \mathbf{u} \cdot \nabla - \nu \Delta) \omega + S_\omega = \mathbf{B} \cdot \nabla J
$$

\n
$$
\Delta \Phi = \omega
$$

\n
$$
\Delta \Psi = J
$$

$$
\mathbf{u} = \vec{z} \times \nabla \Phi , \ \mathbf{B} = \vec{z} \times \nabla \Psi
$$

$$
\{\Phi, \Psi\} = 2[\Phi_{xy}(\Psi_{xx} - \Psi_{yy}) - \Psi_{xy}(\Phi_{xx} - \Phi_{yy})]
$$

Preconditioner is developed as an extension of Chacón, Knoll and Finn, JCP, **178** (2002).

1Strauss and Longcope, JCP, **147**, 1998

Structured Adaptive Mesh Refinement

• Structured adaptive mesh refinement (SAMR) represents a locally refined mesh as a union of logically rectangular meshes.

- The mesh is organized as a hierarchy of nested refinement levels.
- Each refinement level defines a region of uniform resolution.
- Each refinement level is the union of logically rectangular patches.

Hierarchical Structure of SAMR Grids

Tearing Mode Results

Tearing Mode Performance

 $\eta_k = 0.1$, $\epsilon_{rel} = \epsilon_{abs} = 10^{-7}$, 2 SI iterations, V(3,3) cycles

Island Coalescence Results at t=8

Tilt Instability Results at t=7

