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• Motivation

• Parabolization: key for SCALABILITY

• Application: Resistive 3D MHD

• Application: Hall MHD

• Implicit + AMR: proof of principle

Luis Chacón, chacon@lanl.gov



Challenges in fusion simulation:
“The tyranny of scales”

(a) Time scales in fusion plasmas (FSP report) (b) Length scales in a typical fu-
sion plasma (Tang, Phys. Plas-
mas, 9 (5), 2002)

"The tyranny of scales will not be simply defeated by building bigger
and faster computers" (SBES report, p. 30)
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Requirements and impact of algorithms?

(c) Computational requirements for fusion plasma inte-
grated simulation (FSP report)

(d) Impact of algorithms in gas combustion effective
FLOPS (SBES report)

"Faster and more cost-effective hardware is a strong driver for
simulation-based engineering. However, algorithmic improvements

have been far more important." (SBES report, p. 50)
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Algorithmic challenges in XMHD (I)

• XMHD is a strongly hyperbolic PDE system.

• Numerically, XMHD is a nonlinear algebraic system of very stiff equations:

– Elliptic stiffness (diffusion): Jacobian condition number ∼ ∆t D
∆x2

– Hyperbolic stiffness (linear and dispersive waves): Jacobian condition number ∼
∆t ωfast ∼ ∆t

∆tCFL
� 1

• An implicit integration of XMHD may be advantageous to step over wave phenomena
and get to the dynamical time scale of interest.

Implicit methods require inversion of very large, sparse matrices!
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Algorithmic challenges in XMHD (II)

• Brute-force algorithms will not be able to cover the span between disparate time/length
scales, regardless of computer power (gas combustion example).

• Key algorithmic feature: SCALABILITY!

– Minimize number of degrees of freedom (grid points) without sacrificing spatial res-
olution: spatial adaptivity

– Be able to follow lowest frequency time scales (application dependent): implicit time
stepping

It is our contention that fully implicit, spatially adaptive methods are essential for
scalability, and thus an integral part of a predictive plasma simulation tool!

Scalable algorithm: CPU ∼ O(N/np), N is # dof, np is # procs
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Alternatives for inversion algorithms: NOT SCALABLE

• Explicit (trivial option, here for comparison):

CPU ∼
Tmax

∆tCFL

×
N

np
∼ O(N

1+α/d
/np) ;

d is # dimensions, α = 1, 2 for linear, dispersive waves

• Implicit (requires matrix inversion). Naive options are NOT scalable:
– Direct methods: good parallelization, but do not scale with problem size:

CPU ∼ O
(

N (3−2/d)

npβ

)
, β & 1

– Iterative methods (unpreconditioned Krylov, stationary, etc.): good paralellization,
but VERY slow convergence:

CPU ∼ O
(

Nα

npβ

)
, α > 1 ; β & 1

Scalingwise, direct solver is WORSE than explicit for d > 1 + α
2 ≈ 2
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Alternatives for inversion algorithms: SCALABLE

• Scalable matrix inversion methods require MULTILEVEL approaches (divide and con-
quer in wavenumbers):

– Direct-solve substructuring (X. Z. Tang).
– FETI-DP (Glasser’s talk).
– Multilevel iterative (e.g., classical MG, algebraic MG).

CPU ∼ O
(

N log(N)

npβ

)
, β & 1

• Both approaches are being pursued in T-15 at LANL!

• This talk focuses on the second approach.

• A fundamental component of iterative ML methods (both classical and algebraic) is the
existence of a SMOOTHER (convergent stationary iterative method).

Q: How to ensure the existence of a SMOOTHER for XMHD? A: Parabolization!
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Parabolization and Schur complement: an example

• PARABOLIZATION EXAMPLE:

∂tu = ∂xv , ∂tv = ∂xu.

u
n+1

= u
n

+ ∆t∂xv
n+1

,

v
n+1

= v
n

+ ∆t∂xu
n+1

.

(I −∆t
2
∂xx)u

n+1
= u

n
+ ∆t∂xv

n

• PARABOLIZATION via SCHUR COMPLEMENT:[
D1 U
L D2

]
=

[
I UD−1

2
0 I

] [
D1 − UD−1

2 L 0

0 D2

] [
I 0

D−1
2 L I

]
.

Stiff off-diagonal blocks L, U now sit in diagonal via Schur complement D1 − UD−1
2 L.

The system has been “PARABOLIZED.”

D1 − UD
−1
2 L = (I −∆t

2
∂xx)
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How to build a successful fully implicit algorithm for XMHD

• Even if a smoother exists, MG is remarkably temperamental

• Combination of Krylov methods and MG is optimal:

– MG provides scalability (as a preconditioner)
– Krylov provides robustness

• We seek to develop a successful algorithm for XMHD based on Newton-Krylov-MG.

• We will start with resistive MHD, and then move to XMHD.

• Finally we will discuss the combination of implicit time stepping with dynamic grid adap-
tation.
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Jacobian-Free Newton-Krylov Methods

• Objective: solve nonlinear system ~G(~xn+1) = ~0 efficiently.

• Converge nonlinear couplings using Newton-Raphson method:
∂ ~G

∂~x

∣∣∣∣∣
k

δ~xk = −~G(~xk) .

• Jacobian-free implementation:

(
∂ ~G

∂~x

)
k

~y = Jk~y = lim
ε→0

~G(~xk + ε~y)− ~G(~xk)

ε

• Krylov method of choice: GMRES (nonsymmetric systems).

• Right preconditioning: solve equivalent Jacobian system for δy = Pkδ~x:

JkP
−1
k Pkδ~x︸ ︷︷ ︸

δ~y

= ~−Gk

APPROXIMATIONS IN PRECONDITIONER DO NOT AFFECT ACCURACY OF

CONVERGED SOLUTION; THEY ONLY AFFECT EFFICIENCY!
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Implicit resistive MHD solver
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Resistive MHD model equations

∂ρ

∂t
+ ∇ · (ρ~v) = 0,

∂ ~B

∂t
+ ∇× ~E = 0,

∂(ρ~v)

∂t
+∇ ·

[
ρ~v~v − ~B ~B − ρν∇~v +

←→
I (p +

B2

2
)

]
= 0,

∂T

∂t
+ ~v · ∇T + (γ − 1)T∇ · ~v = 0,

• Plasma is assumed polytropic p ∝ nγ.

• Resistive Ohm’s law:
~E = −~v × ~B + η∇× ~B
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Resistive MHD Jacobian block structure

• The linearized resistive MHD model has the following couplings:

δρ = Lρ(δρ, δ~v)

δT = LT (δT, δ~v)

δ ~B = LB(δ ~B, δ~v)

δ~v = Lv(δ~v, δ ~B, δρ, δT )

• Therefore, the Jacobian of the resistive MHD model has the following coupling struc-
ture:

Jδ~x =


Dρ 0 0 Uvρ

0 DT 0 UvT

0 0 DB UvB

Lρv LTv LBv Dv




δρ

δT

δ ~B

δ~v


• Diagonal blocks contain advection-diffusion contributions, and are “easy” to invert using

MG techniques. Off diagonal blocks L and U contain all hyperbolic couplings.
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PARABOLIZATION: Schur complement formulation

• We consider the block structure:

Jδ~x =

[
M U

L Dv

](
δ~y

δ~v

)

δ~y =

 δρ

δT

δ ~B

 ; M =

 Dρ 0 0

0 DT 0

0 0 DB


• M is “easy” to invert (advection-diffusion, MG-friendly).

Schur complement analysis of 2x2 block J yields:[
M U

L Dv

]−1

=

[
I 0

−LM−1 I

] [
M−1 0

0 P−1
Schur

] [
I −M−1U

0 I

]
,

PSchur = Dv − LM
−1

U .

• EXACT Jacobian inverse only requires M−1 and P−1
Schur.

• Schur complement formulation is fundamentally unchanged in Hall MHD!
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Physics-based preconditioner (I)

• The Schur complement analysis translates into the following 3-step EXACT inversion
algorithm:

Predictor : δ~y
∗
= −M

−1
Gy

Velocity update : δ~v = P
−1
Schur[−Gv − Lδ~y

∗
], PSchur = Dv − LM

−1
U

Corrector : δ~y = δ~y
∗ −M

−1
Uδ~v

• MG treatment of PSchur is impractical due to M−1.

Need suitable simplifications (SEMI-IMPLICIT)!

• We consider the small-flow-limit case: M
−1 ≈ ∆t

• This approximation is equivalent to splitting flow in original equations.
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Physics-based preconditioner (II)

• Small flow approximation: M−1 ≈ ∆t in steps 2 & 3 of Schur algorithm:

δ~y
∗

= −M
−1

Gy

δ~v ≈ P
−1
SI [−Gv − Lδ~y

∗
] ; PSI = Dv −∆tLU

δ~y ≈ δ~y
∗ −∆tUδ~v

where:

PSI = ρ
n
[←→

I /∆t + θ(~v0 · ∇
←→
I +

←→
I · ∇~v0 − ν

n∇2←→
I )
]

+ ∆tθ
2
W ( ~B0, p0)

W ( ~B0, p0) = ~B0 ×∇×∇× [
←→
I × ~B0]−~j0 ×∇× [

←→
I × ~B0]−∇[

←→
I · ∇p0 + γp0∇ ·

←→
I ]

• PSI is block diagonally dominant by construction!

• We employ multigrid methods (MG) to approximately invert PSI and M : 1 V(4,4) cycle
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Efficiency: ∆t scaling (2D tearing mode)

32× 32

∆t Newton/∆t GMRES/∆t CPU (s) CPUexp/CPU ∆t/∆tCFL

2 5.9 20.9 115 3.1 354
3 5.9 25.6 139 3.8 531
4 6.0 30.5 163 4.3 708
6 6.0 34.7 184 5.8 1062

128× 128

∆t Newton/∆t GMRES/∆t CPU (s) CPUexp/CPU ∆t/∆tCFL

0.5 4.9 8.4 764 8.0 380
0.75 5.7 10.2 908 10.0 570
1.0 5.0 11.5 1000 12.7 760
1.5 5.6 14.7 1246 14.6 1140
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Efficiency: grid scaling

∆t ≈ 1100∆tCFL, 10 time steps

Grid ∆t Newton/∆t GMRES/∆t CPU ĈPU

32x32 6 6.0 34.7 184 5.3
64x64 3 5.8 22.9 468 20.4

128x128 1.5 5.6 14.8 1246 84.2

Why does GMRES/∆t decrease with resolution?
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Effect of spatial truncation error
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Sample 3D results: Screw pinch in 3D

Luis Chacón, chacon@lanl.gov



Sample 3D results: 3D KHI
Knoll and Brackbill, Phys. Plasmas 9 (9) 2002
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Implicit extended MHD solver
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Extended MHD model equations

∂ρ

∂t
+ ∇ · (ρ~v) = 0,

∂ ~B

∂t
+ ∇× ~E = 0,

∂(ρ~v)

∂t
+∇ ·

[
ρ~v~v − ~B ~B − ρν∇~v +

←→
I (p +

B2

2
)

]
= 0,

∂Te

∂t
+ ~v · ∇Te + (γ − 1)Te∇ · ~v = 0,

• Plasma is assumed polytropic p ∝ nγ.

• We assume cold ion limit: Ti � Te ⇒ p ≈ pe .

• Generalized Ohm’s law:

~E = −~v × ~B + η∇× ~B −
di

ρ
(~j × ~B −∇pe)
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Extended MHD Jacobian block structure

• The linearized extended MHD model has the following couplings:

δρ = Lρ(δρ, δ~v)

δT = LT (δT, δ~v)

δ ~B = LB(δ ~B, δ~v, δρ, δT )

δ~v = Lv(δ~v, δ ~B, δρ, δT )

• Jacobian coupling structure:

Jδ~x =


Dρ 0 0 Uvρ

0 DT 0 UvT

LρB LTB DB UvB

Lρv LTv LBv Dv




δρ

δT

δ ~B

δ~v


• We have added off-diagonal couplings.
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Extended MHD Jacobian block structure (cont.)

• The coupling structure can be substantially simplified if we note (p ≈ pe):

1

ρ
(~j × ~B −∇pe) ≈

D~v

Dt

and therefore:
~E ≈ −~v × ~B +

η(T )

µ0

∇× ~B − di

D~v

Dt

• This transforms jacobian coupling structure to:

Jδ~x ≈


Dρ 0 0 Uvρ

0 DT 0 UvT

0 0 DB UR
vB + UH

vB

Lρv LTv LBv Dv




δρ

δT

δ ~B

δ~v


We can therefore reuse ALL resistive MHD PC framework!
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Extended MHD preconditioner

• Use same Schur complement approach.

• M block contains ion scales only! Approximation M−1 ≈ ∆t is very good in extended
MHD (ion scales do NOT contribute to numerical stiffness).

• Additional block UH
vB results, after the Schur complement treatment, in systems of the

form:

∂tδ~v − di
~B0 × (∇×∇× δ~v) = rhs

• This system supports dispersive waves ω ∼ k2!

• We have shown analytically that damped JB is a smoother for these systems!

We can use classical MG!
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Preliminary efficiency results (2D tearing mode)

di = 0.05

1 time step, ∆t = 1.0, V(3,3) cycles, mg tol=1e-2

Grid Newton/∆t GMRES/∆t CPU (s) CPUexp/CPU ∆t/∆texp

32x32 5 22 25 0.44 110
64x64 5 12 66 1.4 238

128x128 5 8 164 6.2 640
256x256 4 7 674 30 3012

Again, GMRES/∆t decreases with resolution!
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Effect of spatial truncation error
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GEM Challenge
J. Birn et al., J. Geophys. Res. , 106 (A3), p.3715-19 (2001)
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Parallel performance with PETSc Toolkit (unpreconditioned)
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Implicit-AMR proof of principle
B. Philip, M. Pernice, and L. Chacón, Lecture Notes in Computational Science and Engineering, accepted (2006).
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Current-Vorticity Formulation of Reduced Resistive MHD 1

(∂t + u · ∇ − η∆) J + ∆E0 = B · ∇ω + {Φ, Ψ}
(∂t + u · ∇ − ν∆) ω + Sω = B · ∇J

∆Φ = ω

∆Ψ = J

u = ~z ×∇Φ , B = ~z ×∇Ψ

{Φ, Ψ} = 2[Φxy(Ψxx −Ψyy)−Ψxy(Φxx − Φyy)]

Preconditioner is developed as an extension of
Chacón, Knoll and Finn, JCP, 178 (2002).

1Strauss and Longcope, JCP, 147, 1998
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Structured Adaptive Mesh Refinement

• Structured adaptive mesh refinement (SAMR) represents a locally refined mesh as a
union of logically rectangular meshes.

• The mesh is organized as a hierarchy of nested refinement levels.

• Each refinement level defines a region of uniform resolution.

• Each refinement level is the union of logically rectangular patches.
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Hierarchical Structure of SAMR Grids
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Tearing Mode Results

t = 50 t = 120 t = 200
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Tearing Mode Performance

NNI NLI
Levels 1 2 3 4 5 1 2 3 4 5
32× 32 1.5 2.0 2.0 2.1 2.5 3.4 7.9 12.0 19.3 33.7
64× 64 1.8 2.0 2.0 2.4 – 6.5 11.7 19.1 33.2 –
128× 128 1.8 2.0 2.4 – – 12.5 20.1 27.2 – –
256× 256 1.9 2.0 – – – 19.9 27.5 – – –
512× 512 1.9 – – – – 26.3 – – – –

ηk = 0.1, εrel = εabs = 10−7, 2 SI iterations, V(3,3) cycles

Luis Chacón, chacon@lanl.gov



Island Coalescence Results at t=8

Luis Chacón, chacon@lanl.gov



Tilt Instability Results at t=7
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