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The Gyroviscous Force

e We currently use Braginskii’s form of the gyroviscous stress for 119% [1, 2
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e This term represents the first order finite-Larmor radius (FLR) contribution to the
fluid equations [1, 2|, in the limit where 2; > v;.

e In toroidal geometry, it is the appropriate closure for the “high-collisionality” regime

in which v; is greater than the bounce frequency.
e Though it is termed “viscosity,” it is not dissipative.

e Particles simulations of reconnection have shown [3] that for the ions, the pressure

tensor balances the reconnection electric field at the X-point.

e Gyroviscosity is stabilizing to “slow” instabilities, for which ~/Q; < kp; [4, 5].
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Gyroviscous Force in Galerkin Form

Operating on V - [l with —z - VX, Z-, and V-, multiplying by the trial function v;, and integrating by
parts until no field is differentiated more than twice, yields:
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Matrix Representation of V - Il

noyv = —V - II can be written in the form:
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e In general, each element of R is sixth-order nonlinear. The evaluation of such a term

using analytic integrations requires O(N°) operations, where IV is the number of trial

functions.

e By introducing a few auxiliary fields, we have been able to rewrite each term as a
fourth-order nonlinear term. The equations determining the auxiliary fields are also

fourth-order nonlinear.
e This results in a reduction of operations by a factor of O(N?).

e This does not introduce error of a higher order than the previous truncation error.
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Matrix Representation of V - Il

We define the following auxiliary variables:

vy — p(i)/BQ; Y2 = 3y(1)/32; Yy®) =y®@r2

y@ — y(%wﬂ/ww/z; y(6) — y(2)(¢72m _ w?y)/g; y (6) — y(2)¢’$¢7y_
The elements R;; can now be written:
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Code Validation: Linear Waves

e We have analytically calculated the eigenmodes of a homogeneous, stationary equilib-

rium for our full extended-MHD model.

e Our simulations are in excellent agreement with these calculations.

2.0 T — 3o T
- o Fast wave _ B=F/2 A i Theory
| A Alfven wave B;=0 | i o Fast wave ]
L g Slow wave ] 250 A Alfven wave B
1.5+ 0o Slow wave
2.0F
=
2 1.0
>
0.5+
0.0l




PRINCETON PLASMA
PHYSICS LABORATORY

=PPPL

Gravitational Instability

e An equilibrium where g - Vp < 0 may be unstable.

e This gravitational instability (GI) is known to be stabilized by FLR effects [4], and
its linear growth rate has been previously calculated taking gyroviscosity into account

5]. Schnack suggested using the GI to validate implementations of gyroviscosity [6].

e We have derived a more general linear dispersion relation, taking into account com-

pressibility, finite 3, and k - g # 0. Starting from an equilibrium where

n(y) = noe”’ ™ ply) = Tnly);  1(y) = VI§ — 2(gL, + TT)[n(y) — nq
we find the linear dispersion relation to be

O0=1+g+0— 2y(1+g+ﬁ)<1+ﬂ)+2yg+1}w+(1+ﬁ)w2.

Q2

in the limit where kL,, > 1> kp; and g ~ 1, where
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Gravitational Instability: Linear Results

Our simulations agree closely with our analytic dispersion relation in both low-3 and

high-/ regimes.
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The dispersion relation given by Roberts and Taylor is not valid in the high-3 regime.
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e Ramos has shown that the Braginskii’s form of the gyroviscous force can be written

2
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e v, is the “magnetization velocity,” which is the same as the diamagnetic drift velocity

vy only when V x (b/B) = 0.
e [requently, the approximation V - Il = —mnv, - Vv is used.

e We considered some consequences of using the approximation V - Il = —mnv, - Vv.
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vy Approximation: Gravitational Instability

e The v, approximation is generally sufficient for understanding the linear stabilization

of the gravitational instability.

e Re-deriving the dispersion relation of the gravitational instability using the v, approx-

imation yields almost the same dispersion relation.
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Shown are contours of the marginally stable values of v.
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Magnetothermal Instability

e We have implemented a field-aligned heat conduction term, q = /<;||lA)lA3 - VT

e We have successfully simulated the magnetothermal instability|7] (MTI) in the linear

regime, including gyroviscosity.
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(For this case, k) /k. = 10'2.)
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We have derived the flux form of the extended-MHD equations in cylindrical geom-

etry, and have implemented them in a new code which:

e Uses numerical integration instead of analytic integration. This has resulted in a

significant (~ 500%) speedup.
e Uses an unstructured mesh, in preparation for use of adaptive mesh refinement.
In the future, we plan to
e [ixtend this to three dimensions using multiple poloidal planes.
e Incorporate neoclassical effects: bootstrap current, particle trapping, etc..

e Use the code to find self-consistant equilibria with flows, and to simulate linear and

nonlinear deviations from these equilibria.
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