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The Gyroviscous Force

• We currently use Braginskii’s form of the gyroviscous stress for Πgv [1, 2]:

Πgv
µν =

p(i)

4B2
ερσ(µ





δν)τ + 3
Bν)Bτ

B2





Bρv(σ;τ).

• This term represents the first order finite-Larmor radius (FLR) contribution to the

fluid equations [1, 2], in the limit where Ωi À νi.

• In toroidal geometry, it is the appropriate closure for the “high-collisionality” regime

in which νi is greater than the bounce frequency.

• Though it is termed “viscosity,” it is not dissipative.

• Particles simulations of reconnection have shown [3] that for the ions, the pressure

tensor balances the reconnection electric field at the X-point.

• Gyroviscosity is stabilizing to “slow” instabilities, for which γ/Ωi
<∼ kρi [4, 5].
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Gyroviscous Force in Galerkin Form

Operating on ∇ · Π with −ẑ · ∇×, ẑ·, and ∇·, multiplying by the trial function νi, and integrating by

parts until no field is differentiated more than twice, yields:
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Matrix Representation of ∇ · Π

n∂tv = −∇ · Π can be written in the form:
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• In general, each element of
↔
R is sixth-order nonlinear. The evaluation of such a term

using analytic integrations requires O(N 6) operations, where N is the number of trial

functions.

• By introducing a few auxiliary fields, we have been able to rewrite each term as a

fourth-order nonlinear term. The equations determining the auxiliary fields are also

fourth-order nonlinear.

• This results in a reduction of operations by a factor of O(N 2).

• This does not introduce error of a higher order than the previous truncation error.
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Matrix Representation of ∇ · Π
We define the following auxiliary variables:

Y (1) = p(i)/B2; Y (2) = 3Y (1)/B2; Y (3) = Y (2)I2;

Y (4) = Y (2)ψ,νψ,ν/2; Y (5) = Y (2)(ψ2
,x − ψ2

,y)/2; Y (6) = Y (2)ψ,xψ,y.

The elements Rij can now be written:
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Code Validation: Linear Waves

• We have analytically calculated the eigenmodes of a homogeneous, stationary equilib-

rium for our full extended-MHD model.

• Our simulations are in excellent agreement with these calculations.
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Gravitational Instability

• An equilibrium where g · ∇ρ < 0 may be unstable.

• This gravitational instability (GI) is known to be stabilized by FLR effects [4], and

its linear growth rate has been previously calculated taking gyroviscosity into account

[5]. Schnack suggested using the GI to validate implementations of gyroviscosity [6].

• We have derived a more general linear dispersion relation, taking into account com-

pressibility, finite β, and k · g 6= 0. Starting from an equilibrium where

n(y) = n0e
y/Ln; p(y) = Tn(y); I(y) =

√

I20 − 2(gLn + ΓT )[n(y)− n0]

we find the linear dispersion relation to be

0 = 1 + ḡ + β̄ −




2ν̄
(

1 + ḡ + β̄
) (

1 + β̄
)

+ 2ν̄ḡ +
1

Ω̄





 ω̄ +
(

1 + β̄
)

ω̄2.

in the limit where kLn À 1À kρi and ḡ ∼ 1, where

ω̄ =
kω

kx
√

g/Ln
; Ω̄ =

Ωi

k
√
gLn

; ν̄ =
ρ2iΩik

2
√
gLn

; β̄ = Γ
p0
B2

; ḡ =
gLn
v2A

.
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Gravitational Instability: Linear Results

Our simulations agree closely with our analytic dispersion relation in both low-β and

high-β regimes.

The dispersion relation given by Roberts and Taylor is not valid in the high-β regime.
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v∗ Approximation

• Ramos has shown that the Braginskii’s form of the gyroviscous force can be written

[2]:

∇ · Π = −mnv∗ · ∇v −∇χ−∇×
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where

v∗ = −
1

ne
∇×





p⊥
B
b̂


 ; χ =
mp⊥
2eB

b̂ · ∇ × v.

• v∗ is the “magnetization velocity,” which is the same as the diamagnetic drift velocity

vd only when ∇× (b̂/B) = 0.

• Frequently, the approximation ∇ · Π = −mnvd · ∇v is used.

• We considered some consequences of using the approximation ∇ · Π = −mnv∗ · ∇v.
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v∗ Approximation: Gravitational Instability

• The v∗ approximation is generally sufficient for understanding the linear stabilization

of the gravitational instability.

• Re-deriving the dispersion relation of the gravitational instability using the v∗ approx-

imation yields almost the same dispersion relation.
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Magnetothermal Instability

• We have implemented a field-aligned heat conduction term, q = κ‖b̂b̂ · ∇T .

• We have successfully simulated the magnetothermal instability[7] (MTI) in the linear

regime, including gyroviscosity.

(For this case, κ‖/κ⊥ = 1012.)
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GEM Reconnection
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Current and Future Work

We have derived the flux form of the extended-MHD equations in cylindrical geom-

etry, and have implemented them in a new code which:

• Uses numerical integration instead of analytic integration. This has resulted in a

significant (∼ 500%) speedup.

• Uses an unstructured mesh, in preparation for use of adaptive mesh refinement.

In the future, we plan to

• Extend this to three dimensions using multiple poloidal planes.

• Incorporate neoclassical effects: bootstrap current, particle trapping, etc..

• Use the code to find self-consistant equilibria with flows, and to simulate linear and

nonlinear deviations from these equilibria.
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