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Scalability By 
Domain Decomposition

3D extended MHD modeling of magnetically confined fusion plasmas
requires petascale computing: 1 petaflop = 1015 flops, ~104 procs.

Efficient petascale computing requires scalable linear systems: 
condition number independent of grid size, number of processors.

Domain decomposition is a promising approach to scalability.
• Schwarz overlapping methods.
• Non-overlapping methods, domain substructuring, e.g. FETI-DP.

Analytical proofs of scalability for simple systems: Poisson, linear 
elasticity, Navier-Stokes.

Empirical studies proposed using existing 2D SEL code for extended 
MHD.



SEL Code Features

Flux-source form: simple, general problem setup.

Spatial discretization:
• High-order spectral elements, modal basis.
• Harmonic grid generation, adaptation.

Time step: fully implicit, 2nd-order accurate, 
• θ-scheme
• BDF2

Static condensation, Schur complement.
• Small local direct solves for grid cell interiors.
• Preconditioned GMRES for Schur complement.

Distributed parallel operation with MPI and PETSc.



Spatial Discretization



Alternative Polynomial Bases

Jacobi Nodal BasisUniform Nodal Basis Spectral  (Modal) Basis

• Lagrange 
interpolatory 
polynomials

• Uniformly-spaced 
nodes

• Diagonally 
subdominant

• Lagrange 
interpolatory 
polynomials

• Nodes at roots of 
(1-x2) Pn

(0,0)(x)

• Diagonally 
dominant

• Jacobi polynomials 
(1+x)/2, (1-x)/2,    
(1-x2) Pn

(1,1)(x)

• Nearly orthogonal

• Manifest exponential 
convergence



Implicit Time Discretization: θ-Scheme

• Nonlinear Newton-Krylov iteration.
• Elliptic equations: M = 0.
• Static condensation
• PETSc: GMRES with Schwarz ILU, 

overlap of 3, fill-in of 5.



Static Condensation

Partition into Subdomains (Grid Cells) Ωi

I: Interiors
Γ: Interface: (faces) + edges + vertices.

Block Matrix Form

Solution for uI

Schur Complement

LII
-1: small local direct solves, LU factorization and back substitution.

S-1: global solve, preconditioned GMRES.



The Benefits of Static Condensation

nx = number of grid cells in x direction
ny = number of grid cells in y direction
np = degree of polynomials in x and y
nqty = number of physical quantities

N = order of global matrix to be solved

Without static condensation: N = nx ny nqty np2

With static condensation: N = nx ny nqty (2 np - 1)

Surface to volume ratio.
Substantial reduction of condition number.

So What’s Not To Like?  Scalability!
The global Schur complement matrix S is not scalable.  Its 
condition number, and hence the number of Krylov iterations to 
convergence, increases with nx and ny.



FETI-DP

Finite Element Tearing and Interconnecting, Dual-Primal
Domain decomposition, non-overlapping, Schur complement

Axel Klawonn and Olof B. Widlund, 
“Dual-Primal FETI Methods for Linear Elasticity,”

Comm. Pure Appl. Math. 59, 1523-1572 (2006).

Partition
I: Interior points, inside each subdomain (grid cell) Ωi.

∆: Dual interface points, continuity imposed by Lagrange multipliers.

Π: Primal interface points, continuity imposed directly.

Initial Block Matrix Form







Solution Strategy

Relatively small dense block matrices of LBB and sparse matrix SΠΠ
solved by direct LU factorization and back substitution.

Global Schur complement matrix F solved by parallel preconditioned 
Krylov method, e.g. GMRES.  Requires preconditioner for adequate 
rate of convergence.

Choose primal interface constraints to provide coarse global problem, 
ensure scalability.  2D: vertices.  3D: more complicated.

The scalability of F is accomplished by the coarse, primal solver.  The 
quality of the preconditioner determines the rate of convergence but 
not the scalability.

Scalability has been proven analytically for a limited range of simple 
problems: Poisson, linear elasticity, Navier-Stokes.  More general: 
empirical.



Scalability

A method is scalable if the condition number of the matrix, and hence the number of 
Krylov iterations to convergence, is independent of the number of subdomains.  M-1F
has been proven to be scalable for a limited range of physical problems.



Proposed Research Program

Use existing 2D SEL spectral element code as test bed.

Implement FETI-DP as a modification of existing static condensation 
routines.

Study a progression of extended MHD systems as nx and ny are 
increased to determine:
• Constancy of condition number.
• Constancy of Krylov iterations required for convergence.
• Scaling of condition number with parameters.

Extend spectral element code to 3D.

Investigate optimal choice of primal constraints for scalability.


