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Scalability By
Domain Decomposition

3D extended MHD modeling of magnetically confined fusion plasmas
requires petascale computing: 1 petaflop = 10 flops, ~10* procs.

Efficient petascale computing requires scalable linear systems:
condition number independent of grid size, number of processors.

Domain decomposition is a promising approach to scalability.
» Schwarz overlapping methods.

» Non-overlapping methods, domain substructuring, e.g. FETI-DP.

Analytical proofs of scalability for simple systems: Poisson, linear
elasticity, Navier-Stokes.

Empirical studies proposed using existing 2D SEL code for extended
MHD.



SEL Code Features

» Flux-source form: simple, general problem setup.

» Spatial discretization:
« High-order spectral elements, modal basis.

« Harmonic grid generation, adaptation.

» Time step: fully implicit, 2"-order accurate,
* O-scheme
« BDF2

» Static condensation, Schur complement.
« Small local direct solves for grid cell interiors.

» Preconditioned GMRES for Schur complement.
» Distributed parallel operation with MPI and PETSc.



Spatial Discretization

Flux-Source Form of Equations
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Alternative Polynomial Bases
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Spectral (Modal) Basis
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Implicit Time Discretization: 0-Scheme
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* Nonlinear Newton-Krylov iteration.

 Elliptic equations: M = 0.

e Static condensation

« PETSc: GMRES with Schwarz ILU,
overlap of 3, fill-in of 5.



Static Condensation

Partition into Subdomains (Grid Cells) Q.

|: Interiors
I': Interface: (faces) + edges + vertices.

Block Matrix Form
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Solution for u,

Uy = L;Il (I‘I — LIFuF)
Schur Complement

S=Lprr—LrsL7 L, Sur=rp—Lpl7ies

» L !: small local direct solves, LU factorization and back substitution.
» $-1: global solve, preconditioned GMRES.



The Benefits of Static Condensation

nx = number of grid cells in X direction

ny = number of grid cells in y direction
np = degree of polynomials in X and y
ngty = number of physical quantities

N = order of global matrix to be solved

Without static condensation: N = nx ny ngty np?
With static condensation: N=nxnynqty (2np-1)

Surface to volume ratio.
Substantial reduction of condition number.

So What’s Not To Like? Scalability!

The global Schur complement matrix $ is not scalable. Its
condition number, and hence the number of Krylov iterations to
convergence, increases with nx and ny.



FETI-DP

Finite Element Tearing and Interconnecting, Dual-Primal
Domain decomposition, non-overlapping, Schur complement

Axel Klawonn and Olof B. Widlund,
“Dual-Primal FETI Methods for Linear Elasticity,”
Comm. Pure Appl. Math. 59, 1523-1572 (2006).

Partition
» I: Interior points, inside each subdomain (grid cell) €2;.
» A: Dual interface points, continuity imposed by Lagrange multipliers.

» I1: Primal interface points, continuity imposed directly.

Initial Block Matrix Form
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Local Block Matrices: 1 + A
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Dual Continuity: Lagrange Multipliers

A is a vector of Lagrange multipliers used to impose
continuity on the dual dependent variables ua.

B = 04 , Baua =0, Lppup+Lppug+B'A=rp
0 Ba

Final Block Matrix Form
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Solutions for ug and ug
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Solution Strategy

Relatively small dense block matrices of Lz and sparse matrix $;
solved by direct LU factorization and back substitution.

Global Schur complement matrix F solved by parallel preconditioned
Krylov method, e.g. GMRES. Requires preconditioner for adequate
rate of convergence.

Choose primal interface constraints to provide coarse global problem,
ensure scalability. 2D: vertices. 3D: more complicated.

The scalability of F is accomplished by the coarse, primal solver. The
quality of the preconditioner determines the rate of convergence but
not the scalability.

Scalability has been proven analytically for a limited range of simple
problems: Poisson, linear elasticity, Navier-Stokes. More general:
empirical.



Definitions For Each Subdomain ¢,

(IL) p— T 3, 1 s ]
B))'A = scaled jump matrix
R%?)A = restriction matrix from full interface to dual variables

SS) = Schur complement obtained by eliminating interior variables
Preconditioner
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Condition Number
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Scalability

A method 1s scalable if the condition number of the matrix, and hence the number of
Krylov iterations to convergence, is independent of the number of subdomains. M-'F
has been proven to be scalable for a limited range of physical problems.



Proposed Research Program

Use existing 2D SEL spectral element code as test bed.

Implement FETI-DP as a modification of existing static condensation
routines.

Study a progression of extended MHD systems as nX and ny are
increased to determine:
» Constancy of condition number.

« Constancy of Krylov iterations required for convergence.

 Scaling of condition number with parameters.
Extend spectral element code to 3D.

Investigate optimal choice of primal constraints for scalability.



