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Overview

• The plan for M3D and other plans.

• Two examples from the C production code: p-refinement and grid
packing for the tilting mode.

• The M3D interface.

• Two examples from M3D: tilting mode and converging a high pressure
tokamak equilibrium.

• Status of the M3D integration.

• Some thoughts about (massive) parallelization.
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Integration of a spectral element module into M3D
• Proof of concept, algorithmic development in MATLAB. First serial

production version in C.

• Refactoring modules and routines and providing two interfaces: opaque
pointers for original data structures (SWIG and C) and flat vectors (for
FORTRAN interface).

• Reimplement C version, and implement PYTHON and FORTRAN
versions using these modules and interfaces (easy scripting).

• Define interface to M3D for discretization modules.

• Implement this interface for spectral element discretizations based on the
previous C version.

• Integrate, test, and use this module with serial, OpenMP, PETSc and/or
other distributed memory version of M3D.

Courant Institute, New York University 2



Bernhard Hientzsch Higher Order Spectral Elements in M3D

Other recent work and plans

• More explorative runs and tests with the C version.

• Integrating adaptivity (changing order and changing element grid)?

• Iterative methods and domain decomposition preconditioners for Poisson-
type and Helmholtz-type problems. [Have some tests, algorithms, and
ideas. No real code yet.]

• Extending solvers to Neumann boundary conditions and other problems
possibly needed in future or other M3D versions and/or applications
[Have some algorithms, but not in the production code yet.]

• Thinking about distributed memory parallelization of the current direct
sparse solver based approach and massively parallel implementations.
[Have some ideas. Multi-level Schur?]
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Possible further plans

• C1-continuous elements: Implementation and tests in C. [Have some
initial MATLAB implementation for a variant.]

• Domain decomposition preconditioners. [Have notes and some tests.]

• Higher order time-stepping and/or semi-implicit schemes. [Have
references and some notes.]

• Fully implicit time-stepping. [Have some code, still close to proof-of-
concept.]

• Other test problems. [Have some notes, no full implementations.]

• Larger and other PDE systems. [Have some implementation of 5 equation
models in C production code/PYTHON scripts driving SWIGified C
module.]
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Algorithm for C code

• Semi-implicit, leap-frog type time-stepping.

• Only Helmholtz, Laplace equations to be solved.

• Mass matrix, stiffness matrix, and Poisson bracket must be implemented.

• Direct solver. Cholesky, taking advantage of the (block) sparse symmetric
structure of global Schur complement for global solves, and of dense
Cholesky solvers for the dense local problems. Static condensation.
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Gaining resolution by increasing degree (p-refinement)

Tilting mode, RMHD (2D) with:
∆t = 0.001, ε = 0.001, µ = 0.005, η = 0.001.
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Increasing degree, t = 9.0
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Gaining resolution by packing/adapting the grid

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3

Mesh: concentric1.elem

inner edges boundary edges

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3

Mesh: concentric2.elem

inner edges boundary edges

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3

Mesh: concentric3.elem

inner edges boundary edges

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1  0  1  2  3

Mesh: concentric4.elem

inner edges boundary edges

Courant Institute, New York University 8



Bernhard Hientzsch Higher Order Spectral Elements in M3D

Packing the grid: Current at t = 9.0
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Packing the grid: Ω at t = 9.0
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M3D interface

• M3D implements the assembly of the right hand side and the elliptic
solves in terms of a number of functions/routines defined originally in
mpp3.F.

• The M3DSEL module provides an implementation of that interface in
terms of solvers for specific symmetric statically condensed systems (in
a new file mpp4bh.F) and spectral element operators.

• The functions in mpp4bh.F are implemented in terms of the
functions of the original C version (plus some necessary extensions)
in mpp4interface.c.

• To initialize the discretization and mesh structures and some structures
that will be needed in the solvers, we implement a call back function
getselmesh in getmesh.c which initializes the needed structures,
computes the GLL mesh, and sets up the environment for the C module.
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The mpp3/mpp4bh interface

poiss Solves ∆u = f
delsq Computes ∆u
gcro Computes [u, v]

gradsq Computes ∇u · ∇v
agrad Computes ∇u · ~v

dxdr , dxdz, wgrad Compute derivatives

lowpois Solves 1
R(∇ · (R∇))u = f

lowpoisa Solves R(∇ · ( 1
R∇))u = f

poisvmu Solves (∆ − 1/(dt ∗ ss(.)))u = f
poisdmd Solves (∇ · (ss(.)∇) − 1/(dt ∗ hmt))u = f

poisvmu3 Solves (∆ − 1/(dt ∗ ss(.))u = f

lopoismu Solves (∇ · ( 1
R∇) − 1/(dtt ∗ R ∗ ss(.)))u = f

load3 Computes load vector
pvol Computes volume integral

intgrsq Computes square integral
*fft* Some FFT functions
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The mpp4interface.c implementation

• Differential and integral operators are straightforward to implement once
some basic structures have been initialized and some fields have been
computed.

• The elliptic solvers are all symmetric and positive definite (or negative
definite).

• Assembling local matrices straightforward. Schur complement matrix
can be assembled in general function with a function argument (that
function computes parametrized local matrix).

• Solvers can be initialized and solve can be implemented as general Schur
complement solvers for symmetric systems, using sparse direct solvers for
global block-sparse system, dense direct solvers for local systems, and
fast BLAS. Use abstract interface for these linear algebra algorithms.
Has been implemented with several different packages.
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Tilting mode in M3D: the meshes

Element (skeleton) mesh GLL mesh for degree 5
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Tilting mode in M3D: results at t = 5.0

Ψ C

Ω Φ

Courant Institute, New York University 15



Bernhard Hientzsch Higher Order Spectral Elements in M3D

High pressure tokamak equilibrium: the meshes

Element (skeleton) mesh GLL mesh for degree 5
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High pressure tokamak equilibrium: results at t = 5.0

C Φ Ψ

Ω p

Courant Institute, New York University 17



Bernhard Hientzsch Higher Order Spectral Elements in M3D

High pressure tokamak equilibrium: t = 10.0
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High pressure tokamak equilibrium: t = 10.05
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Status of the M3D integration: serial, OpenMP

• Serial M3D runs for several test problems. Could be more stable and
cleaner, but it works with M3D if done/used right. (As seen in the
pictures.)

• In the moment, we are testing and debugging the OpenMP version.
Some problems with non-thread-safe/non-shared-memory-safe code in
the module. Straightforward duplication of data seems to be the fix.

• Still some work to do to get a nice version which could be disseminated
and run without too much hand-holding, but we are currently making
quite some progress.
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... onto distributed memory, massively parallel
• In the moment, I am considering several possible distributed memory

parallelizations of the module and M3D.

• The approach with the least amount of rewriting necessary for the module
would be to implement a parallelization of that Schur complement
approach, maybe two-level or multi-level, and see if this allows massively
parallel implementations. In this case, one only needs to communicate
the data on the interfaces, which can be implemented in a straightforward
way.

• The approach more similar to PETSc-M3D and possibly optimal with
respect to complexity would be to use iterative solvers and optimal domain
decomposition/multigrid preconditioners. Alas, Schur complement
methods for spectral elements require good coarse spaces but (relatively
little) communication since only on the interface; overlapping methods
are somewhat easier but require more communication.
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