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Outline

TOPS project “elevator speech”
= five slides of propaganda collected by OASCR
= TOPS renewed for a second five years, 2006-2011
s TOPS refining its application plans currently
n must target the petascale (2 platforms available by late 2008)

Scalable solvers for PDEs
= definition of scalable
= two families of techniques that will not scale, and why
= a family of techniques that will

Comments on the “Jardin-Keyes roadmap” for
MHD simulations at ITER scale

TOPS wishlist for MHD collaborations
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The TOPS Center for Enabling Technology
spans 4 labs & 5 universities

Our mission: Enable scientists and engineers to take full advantage
of petascale hardware by overcoming the scalability bottlenecks

traditional solvers impose, and assist them to move beyond “one-

off” simulations to validation and optimization

Lawrence Livermore
National Laboratory

Towards Optimal Petascale Simulations @

Sandia National Laboratories

’ —
——
L ——____|
B M‘%
] 5
.__-,'/' ?-
" o
- b i 2
Y 5 UCSD
....... ity of Califo %" N
“oyag pue University of California

s pu
Columbia University University of Colorado University of Texas at San Diego

CEMM Pre-APS Meeting @

y
FECrree ﬂ

_




Impact: TOPS software has a strong track record of
taking applications to the architectural leading edge

e TOPS Is at the heart of

three Gordon Bell N o 4
“Special’” Prizes 1999 2003 2004
fluids seismic mechanics
After_new coarsening j: C-old M\ ¢ Scales to the edge Of
algorithm (red), 2 - BlueGene/L (131,072
nearly flat scaled = /
speedupfor s i processors, 2B unknowns)
Algebraic Multigrid A-/.\T
° gogggcessors 100000 ~5X spee dup o f t
e Powered numerous plasma fusion code magneto:
- - - through linear solver hydro-
applications achievements  replacement - like dynamics

. . providing “next
N SC' DAC' 1 generation” computer




Why TOPS Is needed: new algorithms solve
problems that new architectures cannot address

1.2

Weak scaling limit, assuming efficiency of
100% in both physics and solver phases

Given, for example: O(N) method

e a “physics” phase that scales 1 on 64K procs
aS“O(IN) ” phase that scal o
e a“solver” phase that scales o
as O(N*?) 0.6 B Physics
e computation is almost all
solver after several doublings O(N3?) method
e Optimal O(N) solver saves Solver takes v/, on 64K procs
P 50% time on

the computational cycles for

the physics 64 procs 1 4 16 64 256 1024
Processor number & relative problem size
64~ : 8
64 (r’ Consider, for example: 10
] e Poisson’s equation in a 3D ~ T
domain ] 16 million
V2u=f |be1 o Solve by “best method o speedup e ]
available” over a span of from each
) 1948 to 1984 (36 years) ) al SOR e
10 = 7
Compare with Moore’s Law: lati e MBI
. relative Gauss-Seidel . .
e Over 36 years, processor architecture speedu Algorithmic and
goes through 24 “doubling periods” P P architectural
e Algorithms produce an equal factor & advances work
of speedup on a small problem; much | Vsirded GE together!
more 0N a larger problem 5 5 10 15 20 o5 30 a5




ScIDAC-2 applications needing scalable solvers

Accelerator design
= Maxwell eigenproblems

= shape optimization subject to PDE
constraints

Plasma fusion

m Poisson problems

m coupled nonlinear systems within a
single “physics” domain (e.g., MHD)

= nonlinear coupling of multiple physics
codes

Porous media flow

m div-grad Darcy problems
Quantum chromodynamics

= Dirac operator inversions
Quantum chemistry

= generalized eigenproblems

Physicists want to concentrate on
physics instead of solvers

m express solver tasks at a level of
mathematical abstraction

m exploit state-of-the-art solvers as these
evolve under the interface

m run same code on laptops (on travel),
low-cost unmetered clusters (at work),
and on unique shared national
resources

Ordered goals for TOPS (need them
all, in this order)

= usability and robustness

= portability

m algorithmic efficiency (optimality)

and implementation efficiency (within
a processor and in parallel)

= algorithmic optimality and software
stability

CEMM Pre-APS Meeting @



TOPS is building a toolchain of proven
solver components that interoperate

We carry users from “one-off” solutions to the
full scientific agenda of sensitivity, stability, and
optimization (from heroic point studies t0
systematic parametric studies) all in one software
suite

TOPS solvers are nested, from applications-
hardened linear solvers outward, leveraging
common distributed data structures

Communication and performance-oriented
details are hidden so users deal with
mathematical objects throughout

TOPS features these trusted packages, whose
functional dependences are illustrated (right)*:

Hypre, PETSc, SUNDIALS,
SuperLU, TAO, Trilinos

These are in use and actively debugged in dozens
of high-performance computing environments, in
dozens of applications domains, by thousands of

user groups around the world
* See also the webpages for each code

Optimizer _> Sens. Analyzer

integrator

Nonlinear Eigensolver

Indicates
dependence
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Some TOPS personnel relevant to MHD efforts

for MHD
" "Heroux .« collaborations

: " FSUNDIALS
Reynolds Smith Woodward €&




Review: two definitions of scalability

“Strong scaling”

m execution time decreases in
Inverse proportion to the
number of processors log T

m fixed size problem overall

= often instead graphed as
reciprocal, “speedup”

e “Weak scaling”

m execution time remains constant,
as problem size and processor
number are increased in T
proportion

m fixed size problem per processor

m also known as “Gustafson D
scaling”
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e Fixed problem size

= Amdahl-type constraints

& “fully resolved” discrete problems (protein folding,
network problems)

& “sufficiently resolved” problems from the
continuum

e Scalable problem size

= Resolution-limited progress in “long time”
Integration
@ explicit schemes for time-dependent PDES

€ suboptimal iterative relaxations schemes for
equilibrium PDEs

= Nonuniformity of threads
€ adaptive schemes
€ multiphase computations (e.g, particle and field)
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Amdahl’s Law (1967)

Fundamental limit to strong scaling due to small overheads

Speedup asymptotically independent of number of processors
available

Analyze by binning code segments by degree of exploitable
concurrency and dividing by available processors, up to limit

Illustration for just two bins:
= fraction f; of work that is purely sequential
= fraction (1-f;) of work that is arbitrarily concurrent

Wall clock time for p processors o f,+(1- 1)/ p
Speedup =1/[f,+ (A= f)/p]l |, | 1| 10| 100 |1000| 10000

= forf,=0.01 S 11.0]9.2|503 |91.0 | 99.0
Applies to any performance enhancement, not just parallelism
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Resolution-limited progress (weak scaling)
[llustrate for CFL-limited

o
explicit time stepping
e Parallel wall clock time
oc TS1+a/dPa/d
e Example: explicit wave
problem in 3D (a=1, d=3)
Domain | 103x 103x108 | 10%x10%x10% | 10°x10°x10°
Exe. time 1 day 10 days 3 months
e Example: explicit diffusion
problem in 2D (a=2, d=2)
Domain 103x 103 10%x 104 105x 10°
Exe. time 1 day 3 months 27 years

d-dimensional domain, length scale L
d+1-dimensional space-time, time scale T
h mesh cell size

T time step size

t=0(h%) bound on time step

n=L/h number of mesh cells in each dim
N=n¢ number of mesh cells overall
M=T/t number of time steps overall

O(N) total work to perform one time step
O(MN) total work to solve problem

P number of processors

S storage per processor

PS total storage on all processors (=N)
O(MN/P) parallel wall clock time

oc (T/t)(PS)/P oc T S!twd pvd

(since t oc h® oc I1/n* = I/N¥? = [/(PS)¥?)
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“Scalable” includes “optimal”

“Optimal” for a theoretical numerical analyst means a
method whose floating point complexity grows at most
Inearly in the data of the problem, N, or linearly times a
polylog term

~or Iterative methods, this means that both the cost per
iteration and the number of iterations must be O(N log? N)

Cost per iteration must include communication cost as
processor count increases in weak scaling, P oc N

s BlueGene permits this with its log-diameter global
reduction

Number of iterations comes from condition number for
linear iterative methods; Newton’s superlinear
convergence is important for nonlinear iterations
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Scalable solvers for PDES

Linear preconditioners

= Domain-decomposition methods
& Schwarz (DD by projection)
@ Schur (DD by partition and elimination)
€ Schwarz-Schur hybrids

= Multigrid

Linear accelerators
= Krylov methods

Nonlinear rootfinders
m Newton-like methods

Hybrids (nonlinear Schwarz, FAS multigrid)
and implications for multiphysics coupling
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Digression for notation’s sake

e \We need a convenient notation for U, X3 s
mapping vectors (representing X @
discrete samples of a continuous ! 6
field) from full domain to subdomain
and back {1 000 0 o}

1:
0 01 00O
e LetR;beaBoolean operator

that extracts the elements of Rlu{l 0000 0} X3 :[xljzul
the i** subdomain from the 001000

global vector s

— —_ x6

; 1 0 (1 0] X,

o ThenI.{,. maps the elements 0 0 0 0 0

of the # subdomain back 0 1 0 11 x X

) T r 11 3
into the global vector, B=lg ol Rwu=|, o( j—

: : X, 0

padding with zeros 0 0 0 0 0

0 0 0 0 0
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Schwarz domain decomposition method
R T

e Consider restriction and extension
operators for subdomains, R,, R/,
and for possible coarse grid, R , R,

e Replace discretized Au = f with R
B Au=B"f
B =RIA;'R,+ 2 . R/ R./

e Solve by a Krylov method y

e Matrix-vector multiplies with I =
m parallelism on each subdomain
= nearest-neighbor exchanges, global reductions
m possible small global system (not needed for parabolic case)
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Schwarz formula (projections)

e If A Is an operator on a space Vand R; are
restrictions into (possibly overlapping) subspaces of
V, V., such that r=uV,

e Then for a good approximation, B/, to A*:
B =X R (RAR') "R +R, (RAR) "R,
— —

N e o p s g h
B =%, R 4R +R 4 R,

e Then K(B_lA) =C
where C is independent of H and & (resp. P and N)
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Schur formula (partitions)
Given a partition | 4 Ar | # | _| /i
Ar, A |ur | | S
Condense:
Sup =g S=A4r - AFiAizlAiF g=fr—AnA;
The full system matrix factors:
A = Afi O / 14;11471“
4, 1|0 §
Then for a good approximation, B, to 4:
- ~ -1 ~ -1
Bl = I AJlAz-r Aii 0
0 M | |4, I

IS

J

where M i1s S, or any good approximation to it
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Schwarz-on-Schur

Since S and M may be complicated, we can further
decompose the multisegmented interface into simple
edges and a vertex block, preconditioned separately:

'=) RS, R +R AR,

0 1 ‘

| (2, )

then
K(MS) =C(A+lod (HKY)) ‘

0, 0,
an edge | E;;

where C is independent of A and % (but may still retain
dependencies on other “bad” parameters, such as jumps
In the diffusion coefficients)
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Operator projection ideas not limited to DD

e In the abstract, Schwarz theory Is about polynomials
of projection operators

e Appropriate for other types of preconditioners, too

e Suppose we have two preconditioners, each of which
Is effective on part of the problem, and we use them

sequentially e Bl‘l (f— Au)
u<—u+ B (f — Au)
e This leads to a multiplicative scheme:
Bt =B'+(I-B,"A)B"
e This is the form of a standard two-level multigrid
scheme In which B, is a “smoother” and B, handles the
complementary modes: B,"=R"A'R; A.=RAR'
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For multigrid, one recurs on this...

\‘
g smoother

A Multigrid V-cycle

Restriction
transfer from
fine to coarse
grid

Prolongation

coarser grid has fewer cells - transfer from coarse
(less work & storage) First Coarse Grid , 1O fine grid

Recursively apply this .,
idea until we have an \ 7

easy problem to solve
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Algebraic multigrid

For Poisson, there is a correspondence between the hard-to-
smooth error modes and wavenumber, leading to the
classification of “fine” (easy to smooth) and “coarse’ (hard to
smooth, near null-space)

For more general operators, this geometrical correspondence
IS broken; the *““coarse” space is whatever is complementary to
the readily smoothable space and is found algebraically, In an
operator-sensitive way (anisotropy, innomogeneity, etc.)

This freedom from geometry is liberating, since problems on
unstructured meshes are readily accommodated

Near null-space modes may now, however, be dense to
represent, unlike in Poisson (okay, If just a few of them)

Ildentifying the coarse space may defy heuristics and need to
be found adaptively (see SIAM Review 47:317-346 (2005) )
CEMM Pre-APS Meeting



Krylov accelerators

o Given Ax = b, A € R"" anditerate x° , we
wish to generate a basis V' = {vl,vz,...,vk}e R for x
(x =~ Vy)and aset of coefficients {yl,yz,...,yk}
such that x" is a best fit in the sense that y € R ¢
minimizes || AVy — b ||
e Krylov methods are algebraic Petrov-Galerkin
methods that define a complementary “test” basis
W ={w, Wy, W, €R™ sothat W 7T (AVy —b)=0
may be solved for y

e In practice k <<n and the bases are grown from seed

vector #° = Ax ° — b via recursive multiplication
by A and Gram-Schmidt
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Onward to nonlinearity

e Linear versus nonlinear problems

= Solving linear systems often constitutes 90% of the running
time of a large PDE simulation

= The nonlinearity is often a fairly straightforward outer loop,
In that it introduces no new types of messages or
synchronizations not present in Krylov-Schwarz, and has
overall many fewer synchronizations than the preconditioned
Krylov method or other linear solver inside it

e \We can wrap Newton, Picard, fixed-point or other
Iterations outside, linearize, and apply what we know

e \We consider both Newton-outside and Newton-inside
methods

CEMM Pre-APS Meeting @



Newton-Krylov-Schur-Schwarz:
a solver “workhorse”

B Jou=-B"'F
Fu)=F(u,)+F' (u )ou=0 Jou =—F - - 4
u=u_+Aou ou= argmin {/x+F} pi- [{ 4 0}{1 A A’TD A= 2 RiT (RiARiT)_lRi
‘ xeV ={F JF,J%F -} L 1|0 M

Newton Krylov Schur Schwarz

nonlinear solver accelerator preconditioner preconditioner
asymptotically spectrally adaptive parallelizable parallelizable
quadratic by structure by domain
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Newton-like 1teration

Given F(u) =0,F : R" — R "anditerate u’
we wish to pick %" such that

Fu""DY=Fw )+ F (u)éu" =0
where &lk :uk+1 —Mk,k = 0,1,2,...

Neglecting higher-order terms, we get

ou’

~[J (") F (u")

where J = F (u*) isthe Jacobian matrix,
generally large, sparse, and ill-conditioned for PDEs

In practice, require || F (u ") + J(u")ou” ||< ¢
In practice, set u*™ =u* + Acu* where ] is selected

to minimize

| F(u*+ Adu®)|
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Newton-Krylov-Schwarz

[ for (k = 0; k < n_Newton; k++) {

compute nonlinear residual and Jacobian

for (j =0; j <n_Krylov; j++) {

forall (i=0;i<n_Precon;i++){ h
solve subdomain problems concurrently

} /I End of loop over subdomains

Newton perform Jacobian-vector product > Krylov
loop enforce Krylov basis conditions loop

update optimal coefficients

check linear convergence
} // End of linear solver J
perform DAXPY update
check nonlinear convergence

} // End of nonlinear loop
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Nonlinear Schwarz preconditioning

e Nonlinear Schwarz has Newton both inside and
outside and iIs fundamentally Jacobian-free

e It replaces F(u)=0 with a new nonlinear system
possessing the same root, ®(u) =0

e Define a correction J,(#) to the ;" partition (e.g.,
subdomain) of the solution vector by solving the
following local nonlinear system:

RF(u+0o,(u)=0

where o6,(u) e R" I1s nonzero only in the
components of the i partition

e Then sum the corrections: ®(u)=2..0,(u) to get
an implicit function of u
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F(u)

Nonlinear Schwarz — picture
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F(u)

Nonlinear Schwarz — picture

Ri
L0 RuRF
RJ RjuRJF
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F(u)

Nonlinear Schwarz — picture

> 0
R;
b 0 RuRF
] |
R; RuR.F

outo;u
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Nonlinear Schwarz, cont.

e It issimple to prove that if the Jacobian of F(u) Is
nonsingular in a neighborhood of the desired root
then ®(u)=0 and F(x)=0 have the same unique

root
e To lead to a Jacobian-free Newton-Krylov algorithm
we need to be able to evaluate for any 4 v e R" :
= The residual ®(u)=2.6,(u)
= The Jacobian-vector product CD(u)'v
e Remarkably, (Cai-Keyes, 2000) it can be shown that

O (u)v~2 (R'J'R)I
where J = F (u) and J, = R.JR ]
e All required actions are available in terms of F'(u) !
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Full Approximation Scheme
(FAS) multigrid

In Newton-Krylov-Schwarz, the linearization is global, then
the global linear problem is additively domain decomposed
Into local subdomains

In nonlinear Schwarz, the nonlinear problem is additively
domain decomposed directly into local subdomains

FAS multigrid is like nonlinear Schwarz, except that the
subspaces are global and multiscale rather than local and
multidomain; and they are handled multiplicatively rather
than additively

Historically, FAS has not had a good software engineering
model, since the user must provide nonlinear residual
evaluations of arbitrary subsets of the global problem

TOPS is working on this, using macros and inlining (and
technigues borrowed from automatic differentiation); FAS
should become available in PETSc-3 during TOPS2
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From SIAM News, Volume 39, Number 7, September 2006

Taking on the ITER Challenge, Scientists Look to
Innovative Algorithms, Petascale Computers

By Michelle Sipics

The promise of fusion as a clean, self-sustaining and essentially limitless energy source has become a mantra for the age, held out by many
scientists as a possible solution to the world's energy crisis and a way to reduce the amounts of greenhouse gases released into the atmosphere
by more conventional sources of energy. If self-sustaining fusion reactions can be realized and maintained long enough to produce electricity,
the technology could potentially revolutionize energy generation and use.

ITER, initially short for International Thermonuclear Experimental Reactor, is now the official, non-acronymic name (meaning “the way™ in
Latin) of what is undoubtedly the largest undertaking of its kind. Started as a collaboration between four major parties in 1935, ITER has evolved
into a seven-party project that finally found a physical home last year, when it was announced that the ITER fusion reactor would be built in
Cadarache, in southern France. (The participants are the European Union, Russia, Japan, China, India, South Korea, and the United States.) In
May, the seven initialed an agreement documenting the negotiated terms for the construction, operation, and decommissioning of the ITER toka-
mak, signifying another milestone for both the project itself and its eventual goal of using fusion to facilitate large-scale energy generation for
the world.

Problems remain, however—notably the years, and perhaps le.lZ'ﬂlﬂE,
proposed ITER tokamak is currently out of reach. But according )
acting director of the Institute for Scientific Computing Research (I ] wrremee-Livasmore National Laborateps-the-abitity To perfn:unu
such simulations may be drawing closer.

Hardware 3, Software 9

“Fusion scientists have been making useful characterizations about plasma fusion devices, physics, operating regimes and the like for over
50 years,” Keyes says. “However, to simulate the dynamics of ITER for a tvflc'ﬂ] experimental ‘shot’ over scales of interest with today’s most
cornmonly used algorithmic technologies would require approximately 10 floating-point operations.” That sounds bleak, given the 280.6
Tflop's (10" flops/s) benchmark performance of the IBM BlueGene/L at Lawrence Livermore National Laboratory—as of June the fastest
supercomputer in the world, But Keyes is optimistic: “We expect that with proper al gorithmic ingenuity, we can reduce this to 107 flops.”

Optimizing the algorithms used, in other words, could lower the computing power required for some ITER simulations by an astounding nine
orders of magnitude. Even more exciting, those newly feasible simulations would be at the petascale—ready to run on the petaflop/s supercom-
puters widely expected within a few years.

The ingenuity envisioned by Keyes even has a roadmap. Together vath Stephen Jardin of tha Princeton Plasma Physics Laboratory, Eeves
developed a breakdown that explains where as many as 12 orders of magnitude of 5 ecade: 1.5 from
increased parallelism, 1.5 from greater processor speed and efficiency, four from adaptive gridding, one from higher-order elements, one from
field-line following coordinates, and three from implicit algorithms.
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Scaling fusion simulations up to ITER

name |symbol |units |CDX-U|DII-D |ITER
Field B, Tesla 022 1 53
Minor | 5 | meters | 22 | 67 2
Temp. | T, keV | 0.1 2.0 8.
Lundquist) s 1x10% | 7108 | 5x108
growin fime| TaS"? s | 2x104 | 9x103 | 7x10-2
olaver | asi? | m o | 2,103 | 2x10% | 8x10°S
ZONES | NgxNgxN, 3x108 | 5x1010 | 3x1013
CFL AXN i i ]
timestep | (Expiici) > 2x107 |8x101 | 7x10-12
g _
nrﬁS‘iﬁs 6x1012 | 1x1020 | 6x1024
1012 needed
(explicit
c/o S. Jardin, PPPL uniform

baseline)

International
Thermonuclear
Experimental
Reactor

2017 — first
experiments, in
Cadaraches,
France
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Hardware: 3

Software: 9

{

e 1.5 0orders:'ncrease rocessor speed and efficiency

e 1.5 orders: ' ne: 1CV
e lora ~~ Algorithmic
= Same Improvements bring fewer clements
o 1- yottascale (10%%) ng
s Le. calculation down to -
e 40rc petascale (1015)!
m conesrequ .| A . of I ER volume and

resolution require entsa , fro.  em are ~10? less severe

e 3 orders: implicit solvers

= Mode growth time 9 orders longer than Alfven-limited CFL
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Comments on JK roadmap
Increased processor speed

m 10 yearsis 6.5 Moore doubling times

Increased concurrency
s BG/L is already 217 procs, MHD now at ca. 212

higher-order discretizations

m |low-order FE preconditioning of high-order discretizations
(Orszag, Fischer, Manteuffel, etc.)

flux-surface following gridding
= evolve mesh to approximately follow flux surfaces
adaptive gridding
= Within ScIDAC, this is APDEC; we will team to make it implicit

implicit solvers

= we propose Newton-like fully implicit, with Krylov/MG innards
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IMPLICIT METHODS

« Partially implicit methods
— Treat fastest time scales implicitly
— Time step still limited by waves
« Semi-implicit methods
— Treat linearized ideal MHD operator implicitly
— Time step limited by advection
— Many iterations
* Fully implicit methods
— Newton-Krylov treatment of full nonlinear equations
— Arbitrary time step
— Still a research project

c/o Dalton Schnack, 2002



TOPS’ wishlist for MHD collaborations —
“Asymptopia”

e Engage at a higher-level than Ax=b
x Newton-Krylov-Schwarz/MG on coupled nonlinear system

e Sensitivity analyses

e Optimization techniques

= design of apparati
= control of experiments
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