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Linear solver performance is historically the most important issue 
for NIMROD’s computational effectiveness.
• This was the case in the early days with bilinear elements and 2D matrices.

• We tried standard approaches with block-based preconditioning.
• Solvers that worked well on standard problems were not very effective on 
our (anisotropic) MHD matrices.  [Recall the AZTEC comparisons.]
• Additive Schwarz with 1D global solves over the poloidal plane 
outperformed others.

• With better modeling, came the need for 3D ‘matrix-free’ solves.
• ‘Full’ continuity and anisotropic thermal conduction produce 3D systems 
with MHD.
• Preconditioning over the poloidal plane alone was effective.

• Interaction with TOPS led us to SuperLU and modern sparse parallel direct 
solves, in general.

• Direct solves handle increasing condition numbers arising from high-order 
polynomial bases.
• Parallel scaling seems to limit quickly, especially when communication is 
‘off-node.’

• Hall physics and the move toward peta-scale computing require new efforts.



In the nonlinear two-fluid ELM computation, 
preconditioner performance was the limiting factor.
• The band of unstable modes immediately produces toroidal coupling that 
increases in strength as the perturbation amplitude became large.
• All solves are 3D and nonsymmetric, but the magnetic advance with Hall has 
the worst condition number (judging by the iteration).
• With the 20×120 mesh of biquintic elements and 43 Fourier components, the 
solves have algebraic vectors as large as 7.5×106 complex elements.
• GMRES orthogonalizes these large iterates.

• Large iteration counts are costly--120 vectors kept but magnetic iterations 
went as large as 200.  [Other solves took about 10 iterations.]

• Convergence was not obtained with 50 vectors.
• Once it got to high 200s, it wouldn’t converge with 120.
• It seemed too costly to keep more.
• Time-step was severely limited (sub nano-seconds) just to improve 
condition numbers and not let the iteration exceed ~200 for each
magnetic solve.

• The nonlinear computation only ran about 2000 total steps. [15 segments 
on 43 nodes of Bassi.]



The timing output shows that the matrix-free part of the 
calculation is not the dominant factor.

Seam  time =       4.26048E+02 1.02460E+00
Seg   time =       1.29540E+03 3.11531E+00
I/O   time =       4.66289E+01 1.12138E-01
Iteration time =   3.03820E+04 7.30656E+01
Factoring time =   4.29958E+03 1.03401E+01
Line comm time =   0.00000E+00 0.00000E+00
FFT   time =       6.66910E+03 1.60385E+01
FE matrix time =   5.89415E+03 1.41748E+01
FE rhs time =      1.00635E+04 2.42017E+01
Static con time =  2.68359E+02 6.45377E-01

• FE rhs time is much less than iteration time.
• SLU factoring time is small, despite new matrices at each step, so SLU solve 
time cannot account for iteration time either.
• Orthogonalization is the culprit.
• Dan is considering a BLAS replacement for the present orthogonalization
method, but better preconditioning is critical.



The Fourier representation leads to dense submatrices over the 
toroidal angle, but FFTs provide efficiency.
• Linear finite element operations can be broken into a set of distinct steps:
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in the poloidal plane. 

Finite Fourier series is used for 
the perpendicular (toroidal) 
direction.



Our present preconditioning strategy uses just one possible 
simplification to produce approximations to the matrices.
• Omitting toroidal coupling, the matrix is composed of the following steps that 
lead to sparse matrices.
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• Another approximation omits poloidal operations:
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• Finding a set of inverse operations would be straightforward:
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• A full poloidal/toroidal preconditioning step could then be done by additive or 
multiplicative Schwarz:
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The brainstorming session in Seattle produced a number of ideas for 
improving the scalability of our preconditioning.

• Multi-level with SuperLU (possibly only) at the highest level.
• Link to a multi-grid package such as HYPRE (via PETSc?).
• Give SuperLU only numerically large matrix elements, like a 
threshold-incomplete factorization strategy.
• Skip static condensation during preconditioning so that SuperLU 
can better overlap computation with communication.
• Perform alternating-direction-implicit operations with the toroidal 
direction.


