New CDX-U Equilibrium, M3D Results & Error Field Calculations

Josh Breslau

CEMM Meeting Orlando November 11, 2007 I. CDX-U Sawtooth

Previous Nonlinear M3D-NIMROD Comparison

Good agreement with each other; period **not** in agreement with experiment.

Refinements to Physics Model Required

Next study to include these refinements:

- Apply ohmic heating instead of volumetric heat source, with self-consistent evolving resistivity profile.
- Apply loop voltage rather than volumetric current source to better model the inductive discharge.
- Choose a more realistic perpendicular thermal conductivity profile, consistent with quasi-equilibrium state.
- Include additional two-fluid terms as necessary/feasible.
- Begin with an analytically specified CDX-like equilibrium.

Specification of Analytic Equilibrium

Quantity	Value
Major radius R ₀	0.341 m
Minor radius <i>a</i>	0.247 m (aspect ratio = 1.38)
Ellipticity κ	1.35
Triangularity δ	0.25
Central temperature $(T_e = T_i)$	100 eV
Normalized central pressure $\mu_0 p_0$	2.5×10^{-4} (implies $n_0 = 1.8 \times 10^{-19} \text{ m}^{-3}$)
α Parameter in pressure equation*	0.1
Vacuum value g_0 of $R \cdot B_T$	0.042 T⋅m
Effective ion charge Z _{EFF}	2.0
Loop voltage V _L	3.1741 V (implies $q_0 \approx 0.82$)

*
$$p(\psi) = p_0 \left[\alpha \tilde{\psi} + (1 - \alpha) \tilde{\psi}^2 \right]$$
, where $\tilde{\psi} = \frac{\psi - \psi_{\text{limiter}}}{\psi_{\text{axis}} - \psi_{\text{limiter}}}$.

Use equilibrium code to solve Grad-Shafranov equation, with profile of heat conduction coefficient χ computed self-consistently to keep temperature constant given profile, energy supplied by applied $V_{\rm L}$.

Form of New Equilibrium

 $R(\theta) = R_0 + a\cos\left[\theta + \delta\sin\left(\theta\right)\right]$ $z(\theta) = a\kappa\sin(\theta)$

 $T(\psi) = T_0 \tilde{\psi},$

$$n(\psi) = \frac{p}{2k_B T} = \frac{p_0}{2k_B T_0} \left[\alpha + (1 - \alpha) \tilde{\psi} \right]$$

 $q_{min} = 0.8203$

Minimum value: 9.21×10^{-6} Old case: pkkk = 9.09×10^{-4}

Conservation properties

n=1 eigenmode

1,1 mode; $\gamma\tau_{A}\approx$ (4.52 \pm 0.05) \times 10^{-2}

n=2 eigenmode

2,2 mode; $\gamma \tau_A \approx (4.015 \pm 0.005) \times 10^{-3}$

II. DIII-D Error Fields

Initial study

- Begin with a DIII-D equilibrium.
- Add an *m*=2, *n*=1 perturbation of specified amplitude to initial poloidal flux on plasma boundary.
- Measure plasma displacements, singular currents with linear code; infer island widths.
- Evolve M3D nonlinearly until saturation of *n*=1 islands; compare widths to linear result.

DIII-D Equilibrium

Initial Perturbation

• Add helical perturbation to poloidal flux function ψ on boundary of the form

$$\tilde{\psi}_{boundary}(\theta,\varphi) = \tilde{\psi}_0 \cos(\varphi - 2\theta)$$

where φ is the toroidal angle, θ is the geometric poloidal angle defined by

$$\tan\left(\theta\right) = \frac{z}{R - R_0}$$

(normalized major radius $R_0=2.89$), and the equilibrium flux is $\psi = 0$ on the boundary and $\psi = -0.506$ on the magnetic axis.

• To generate 2,1 islands large enough to resolve numerically, choose

$$\tilde{\psi}_0 = 7.5 \times 10^{-3} \qquad \left(\frac{\tilde{\psi}_0}{|\psi_0|} = 1.48 \times 10^{-2}\right)$$

• Do not perturb initial boundary current density.

Initial State

• Begin by solving the Poisson equation

$$\frac{\partial^2 \psi}{\partial R^2} - \frac{1}{R} \frac{\partial \psi}{\partial R} + \frac{\partial^2 \psi}{\partial z^2} = -RJ_{\phi}$$

for ψ subject to the perturbed boundary condition, where J_{ϕ} is the unperturbed equilibrium toroidal current density.

- Because the initial current remains unperturbed, the resulting state represents the superposition of the equilibrium field (including external and plasma currents) and the error field, without the plasma reponse.
- Time-evolving from this state with various choices of resistivity η will show the effect of the plasma response on the islands.

Initial State Has Magnetic Islands

Resolving the Islands

Poloidal mesh has 128 radial, 512 θ zones; packed x9 around q=2 surface.

Nonlinear Results Disagree with Linear Scaling 2,1 island linear response (IPEC) 0.10 Island width (flux units) $\delta w \propto (\Delta \psi)^{1/2}$ Nonlinear: for $\Delta \psi/\psi_0 = 1.48 \times 10^{-2}$, $\delta w \approx 8 \times 10^{-3}$ 0.01 0.0010 0.0001 $\Delta \psi / \psi_0$

Conclusions

- Nonlinear island width decreases as η decreases.
- Disagreement may be due to differences in boundary conditions, lack of nonlinear convergence, or inadequacy of linear model (nonlinear island saturation).
- More work is needed to resolve disagreement.
- Additional future work to include further scaling studies, and investigate effects of plasma rotation.