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I. CDX-U Sawtooth
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Good agreement with each other; period not in agreement with experiment.



Refinements to Physics Model Required 

Next study to include these refinements:
• Apply ohmic heating instead of volumetric heat source, with self-consistent 

evolving resistivity profile.

• Apply loop voltage rather than volumetric current source to better model the 
inductive discharge.

• Choose a more realistic perpendicular thermal conductivity profile, 
consistent with quasi-equilibrium state.

• Include additional two-fluid terms as necessary/feasible.

• Begin with an analytically specified CDX-like equilibrium.



Specification of Analytic Equilibrium
Quantity Value

Major radius R0 0.341 m

Minor radius a 0.247 m  (aspect ratio = 1.38)

Ellipticity κ 1.35

Triangularity δ 0.25

Central temperature (Te =Ti ) 100 eV

Normalized central pressure μ0 p0 2.5 ×

 

10-4 (implies n0 = 1.8 ×

 

10-19 m-3)

α

 

Parameter in pressure equation* 0.1

Vacuum value g0 of R·BT 0.042 T·m

Effective ion charge ZEFF 2.0

Loop voltage VL 3.1741 V  (implies q0 ≈

 

0.82)
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Use equilibrium code to solve Grad-Shafranov equation, with profile of heat 
conduction coefficient χ computed self-consistently to keep temperature constant 
given profile, energy supplied by applied VL .



Form of New Equilibrium

qmin = 0.8203 Minimum value: 9.21 ×

 

10-6

Old case: pkkk ≡

 

9.09 ×

 

10-4
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Conservation properties

Renorm. factor=64.6

Renorm. factor=1.0



n=1 eigenmode
Velocity stream function U C = -RJφ Temperature

1,1 mode;  γτA ≈
 

(4.52 ±
 

0.05) ×
 

10-2



n=2 eigenmode
Velocity stream function U C = -RJφ Temperature

2,2 mode;  γτA ≈
 

(4.015 ±
 

0.005) ×
 

10-3



II. DIII-D Error Fields



Initial study
• Begin with a DIII-D equilibrium.

• Add an m=2, n=1 perturbation of specified amplitude to initial 
poloidal flux on plasma boundary.

• Measure plasma displacements, singular currents with linear 
code; infer island widths.

• Evolve M3D nonlinearly until saturation of n=1 islands; 
compare widths to linear result.



DIII-D Equilibrium
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Initial Perturbation
• Add helical perturbation to poloidal flux function ψ on boundary of the form

( ) ( )0, cos 2boundaryψ θ ϕ ψ ϕ θ= −

where ϕ is the toroidal angle, θ is the geometric poloidal angle defined by

( )
0

tan z
R R

θ =
−

(normalized major radius R0 =2.89), and the equilibrium flux is ψ = 0 on the boundary 
and ψ = -0.506 on the magnetic axis.

• To generate 2,1 islands large enough to resolve numerically, choose
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• Do not perturb initial boundary current density.



Tracking Ideal Current Sheets is 
Impractical
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Initial State
• Begin by solving the Poisson equation

2 2

2 2

1 RJ
R R R z φ
ψ ψ ψ∂ ∂ ∂

− + = −
∂ ∂ ∂

Instantaneous Perturbed Flux

R

for ψ subject to the perturbed boundary condition,
where Jφ

 

is the unperturbed equilibrium toroidal
current density.

• Because the initial current remains unperturbed, 
the resulting state represents the superposition 
of the equilibrium field (including external and 
plasma currents) and the error field, without the 
plasma reponse.

• Time-evolving from this state with various 
choices of resistivity η will show the effect of 
the plasma response on the islands.



Initial State Has Magnetic Islands
Poincaré section, ϕ=0 plane

3,1 island width
Δψ = 1.33%

2,1 island width
Δψ = 1.09%



Resolving the Islands
Poloidal mesh has 128 radial, 512 θ zones; packed x9 around q=2 surface.

2,1 island spans nine zones → resolved.



Measuring Island Widths

s

θ

2,1

3,1

Plot width
= 0.0165

η=3.162×10-3, t=65.0, φ=0

Estimated width (small island formula):

2 0.00759mnBw
mι

Δ = ≈
′



Approaching Steady States

width = 1.1 %
width = 0.95 %

width = 0.85 % width = 0.8 %



Nonlinear Results Disagree with Linear 
Scaling

δw ∝

 

(Δψ)1/2

Nonlinear: for Δψ/ψ0 = 1.48×10-2, δw ≈
 

8×10-3



Conclusions
• Nonlinear island width decreases as η decreases.

• Disagreement may be due to differences in boundary 
conditions, lack of nonlinear convergence, or 
inadequacy of linear model (nonlinear island 
saturation).

• More work is needed to resolve disagreement.

• Additional future work to include further scaling 
studies, and investigate effects of plasma rotation.
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