Preconditioning and Scalability of Implicit Extended MHD Plasma Simulation by FETI-DP Domain Substructuring

Alan H. Glasser

Collaborators: Slava Lukin, Barry Smith

Center for Extended Macroscopic Modeling Orlando, Florida, November 11, 2007

U N C L A S S I F I E D

Slide 0

Scalability By Domain Decomposition

- ¾ 3D extended MHD modeling of magnetically confined fusion plasmas requires petascale computing: 1 petaflop = 10^{15} flops \sim 10⁵ procs.
- ¾ Efficient petascale computing requires scalable linear systems: solution time independent of grid size, number of processors.
- \triangleright Current method: static condensation; not scalable.
- \triangleright Domain decomposition is a promising approach to scalability.
	- Schwarz overlapping methods.
	- Non-overlapping methods, domain substructuring, *e.g.* FETI-DP.
- ¾ Analytical proofs of scalability for simple systems: Poisson, linear elasticity, Navier-Stokes.
- ¾Empirical studies: using existing 2D SEL code for extended MHD.

U N C L A S S I F I E D

Slide 1

Condition Number and Scalability

Condition Number

$$
\mathbf{L}\mathbf{u}_{i} = \lambda_{i}\mathbf{u}_{i}, \quad \kappa\left(\mathbf{L}\right) = \frac{\lambda_{\max}}{\lambda_{\min}}
$$

Scalability

A matrix is scalable is its condition number, and hence the number of Krylov iterations to convergence, is independent of the number of subdomains.

Theorem

Scalability of dual matrix \bf{F} has been proven analytically for a limited range of elliptic problems: Poisson, linear elasticity, Navier-Stokes. $\kappa(\mathbf{F}) = C \left[1 + \ln(H/h)\right]^{\gamma}, \gamma = 2 \text{ or } 3.$

Conjecture

F is scalable for a broader range of problems, to be determined empirically.

Slide 2

Development Platform SEL 2D Spectral Element Code

- ¾ Flux-source form: simple, general problem setup.
- \triangleright Spatial discretization:
	- High-order C^0 spectral elements, modal basis
	- Harmonic grid generation, adaptation, alignment
- \triangleright Time step: fully implicit, 2nd-order accurate,
	- θ-scheme
	- BDF2
- ¾ Static condensation, Schur complement.
	- Small local direct solves for grid cell interiors.
	- Preconditioned GMRES for Schur complement.
- ¾Distributed parallel operation with MPI and PETSc.

U N C L A S S I F I E D

Alternative Polynomial Bases

- \bullet Lagrange interpolatory polynomials
- \bullet Uniformly-spaced nodes
- \bullet Diagonally subdominant

- \bullet Lagrange interpolatory polynomials
- Nodes at roots of $(1-x^2) P_n^{(0,0)}(x)$
- \bullet Diagonally dominant

U N C L A S S I F I E D

Jacobi Nodal Basis Spectral (Modal) Basis

- • Jacobi polynomials *(1+x)/2, (1-x)/2,* $(1-x^2) P_n^{(1,1)}(x)$
- •Nearly orthogonal
- \bullet Manifest exponential convergence

Static Condensation

- \triangleright Implicit time step requires linear system solution: $L \mathbf{u} = \mathbf{r}$.
- ¾ Direct solution time grows as *n*3.
- \triangleright Break up large matrix into smaller pieces: Interiors + Interface.
- \triangleright Small direct solves for interior.
- ¾ Advanced parallel iterative solves for interface.
- \triangleright Substantially reduces solution time.
- \triangleright Not scalable to petaflop parallel computers; solution time grows with problem size.

FETI-DP

Finite Element Tearing and Interconnecting, Dual-Primal

- \triangleright Break up large matrix into three pieces: interior + dual + primal.
- \triangleright Small direct solves for interior.
- \triangleright Parallel direct solve for primal points.
- ¾ Matrix-free preconditioned GMRES for dual points.
- \triangleright Primal solve provides information to dual problem about coarse global conditions, providing scalability.
- ¾ Interior preconditioner accelerates convergence of dual solve.
- \triangleright The iterative, parallel, dual problem is scalable!

FETI-DP

Finite Element Tearing and Interconnecting, Dual-Primal Domain decomposition, non-overlapping, Schur complement

Axel Klawonn and Olof B. Widlund, "Dual-Primal FETI Methods for Linear Elasticity," Comm. Pure Appl. Math. **59**, 1523-1572 (2006).

Partition

- ¾ I: Interior points, inside each subdomain (grid cell) Ω*ⁱ*.
- ¾Δ: Dual interface points, continuity imposed by Lagrange multipliers.
- \blacktriangleright Π: Primal interface points, continuity imposed directly.

Initial Block Matrix Form

$$
L u = r, \quad L = \begin{pmatrix} L_{II} & L_{I\Delta} & L_{III} \\ L_{\Delta I} & L_{\Delta\Delta} & L_{\Delta II} \\ L_{II} & L_{II\Delta} & L_{III} \end{pmatrix}, \quad u = \begin{pmatrix} u_I \\ u_\Delta \\ u_\Pi \end{pmatrix}, \quad r = \begin{pmatrix} r_I \\ r_\Delta \\ r_\Pi \end{pmatrix}
$$

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Slide 7

Algebraic Reorganization

Local Block Matrices: $I + \Delta$

$$
\mathbf{L}_{BB} = \begin{pmatrix} \mathbf{L}_{II} & \mathbf{L}_{I\Delta} \\ \mathbf{L}_{\Delta I} & \mathbf{L}_{\Delta \Delta} \end{pmatrix}, \quad \mathbf{u}_B = \begin{pmatrix} \mathbf{u}_I \\ \mathbf{u}_{\Delta} \end{pmatrix}, \quad \mathbf{r}_B = \begin{pmatrix} \mathbf{r}_I \\ \mathbf{r}_{\Delta} \end{pmatrix}
$$

Dual Continuity: Lagrange Multipliers

 λ is a vector of Lagrange multipliers used to impose continuity on the dual dependent variables \mathbf{u}_{Δ} .

$$
\textbf{B} = \begin{pmatrix} \textbf{0} & \textbf{0} \\ \textbf{0} & \textbf{B}_{\Delta} \end{pmatrix}, \quad \textbf{B}_{\Delta} \textbf{u}_{\Delta} = 0, \quad \textbf{L}_{BB} \textbf{u}_{B} + \textbf{L}_{B \Pi} \textbf{u}_{\Pi} + \textbf{B}^{T} \lambda = \textbf{r}_{B}
$$

Final Block Matrix Form

\n
$$
\mathsf{L} = \begin{pmatrix}\n\mathsf{L}_{BB} & \mathsf{L}_{B\Pi} & \mathsf{B}^T \\
\mathsf{L}_{\Pi B} & \mathsf{L}_{\Pi \Pi} & \mathbf{0} \\
\mathsf{B} & \mathbf{0} & \mathbf{0}\n\end{pmatrix}, \quad \mathbf{u} = \begin{pmatrix}\n\mathbf{u}_B \\
\mathbf{u}_\Pi \\
\lambda\n\end{pmatrix}, \quad \mathbf{r} = \begin{pmatrix}\n\mathbf{r}_B \\
\mathbf{r}_\Pi \\
\mathbf{0}\n\end{pmatrix}
$$
\nUNCLASSIFIED

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Slide 8

Solution and Reduction

Solutions for u_B and u_{Π}

$$
\mathbf{u}_{B} = \mathbf{L}_{BB}^{-1} \left(\mathbf{r}_{B} - \mathbf{L}_{B\Pi} \mathbf{u}_{\Pi} - \mathbf{B}^{T} \lambda \right)
$$

$$
\mathbf{S}_{\Pi\Pi} \equiv \mathbf{L}_{\Pi\Pi} - \mathbf{L}_{\Pi B} \mathbf{L}_{BB}^{-1} \mathbf{L}_{B\Pi}
$$

$$
\mathbf{u}_{\Pi} = \mathbf{S}_{\Pi\Pi}^{-1} \left[\mathbf{r}_{\Pi} - \mathbf{L}_{\Pi B} \mathbf{L}_{BB}^{-1} \left(\mathbf{r}_{B} - \mathbf{B}^{T} \lambda \right) \right]
$$

Global Schur Complement Equation for λ

 $F\lambda = d$

$$
\mathbf{F} = \mathbf{B}\left(\mathbf{L}_{BB}^{-1} + \mathbf{L}_{BB}^{-1}\mathbf{L}_{B\Pi}\mathbf{S}_{\Pi\Pi}^{-1}\mathbf{L}_{\Pi B}\mathbf{L}_{BB}^{-1}\right)\mathbf{B}^T
$$

 $\mathbf{d} = \mathsf{BL}_{BB}^{-1} \left[\mathbf{r}_{B} - \mathsf{L}_{B\Pi} \mathsf{S}_{\Pi\Pi}^{-1} \left(\mathbf{r}_{\Pi} - \mathsf{L}_{\Pi B} \mathsf{L}_{BB}^{-1} \mathbf{r}_{B} \right) \right]$ **U N C L A S S I F I E D**

Slide 9

Algorithms: Example

Schur Complement Matrix-Vector Product $F\lambda$, Eqs. (8) and (9)

- 1. Compute $\mathbf{u}_B = \mathbf{B}^T \lambda$, using restriction \mathbf{R}_D and sign σ .
- 2. Compute $\mathbf{u}_B = \mathbf{L}_{BB}^{-1} \mathbf{u}_B$, using LAPACK.
- 3. Copy $\mathbf{v}_B = \mathbf{u}_B$.
- 4. Compute $\mathbf{u}_{\Pi l} = \mathbf{L}_{\Pi B} \mathbf{u}_{B}$.
- 5. Assemble $\mathbf{u}_{\Pi l}$ into $\mathbf{u}_{\Pi g}$, using extension \mathbf{R}_{Π}^T .
- 6. Compute $\mathbf{u}_{\Pi q} = \mathbf{S}_{\Pi \Pi}^{-1} \mathbf{u}_{\Pi q}$, using SuperLU_DIST.
- 7. Disassemble $\mathbf{u}_{\Pi g}$ into $\mathbf{u}_{\Pi l}$, using restriction \mathbf{R}_{Π} .
- 8. Compute $\mathbf{u}_B = \mathbf{L}_{B\Pi} \mathbf{u}_{\Pi l}$.
- 9. Compute $\mathbf{u}_B = \mathbf{L}_{BB}^{-1} \mathbf{u}_B$, using LAPACK.
- 10. Add $\mathbf{u}_B = \mathbf{u}_B + \mathbf{v}_B$.
- 11. Compute $\mathbf{F}\lambda = \mathbf{B}\mathbf{u}_B$, using extension \mathbf{R}_D^T and sign σ .

U N C L A S S I F I E D

Slide 10

Cell-Wise Preconditioning

Definitions For Each Subdomain Ω_i

 $\mathbf{B}_{D,\Lambda}^{(i)} \equiv$ scaled jump matrix

 $\mathbf{R}_{\Gamma\Lambda}^{(i)}\equiv$ restriction matrix from full interface to dual variables $S_{\epsilon}^{(i)} \equiv$ Schur complement obtained by eliminating interior variables

Preconditioner

$$
\mathbf{M}^{-1} = \sum_{i=1}^n \mathbf{B}_{D,\Delta}^{(i)} \mathbf{R}_{\Gamma\Delta}^{(i)} \mathbf{S}_{\varepsilon}^{(i)} \mathbf{R}_{\Gamma\Delta}^{(i)T} \mathbf{B}_{D,\Delta}^{(i)T}, \quad \mathbf{M}^{-1} \mathbf{F} \lambda = \mathbf{M}^{-1} \mathbf{d}
$$

U N C L A S S I F I E D

Slide 11

Solution Strategy

- ► Small dense block matrices of L_{BB} solved locally by LAPACK.
- ¾ Sparse global, primal matrix **S**ΠΠ solved by SuperLU.
	- Short-term: redundant on all processors.
	- Medium-term: distributed SuperLU.
	- Long-term: ILU*n*-preconditioned GMRES.
- ¾ Global Schur complement matrix **F** solved by matrix-free parallel preconditioned GMRES.
- \triangleright Choose primal interface constraints to provide coarse global problem, ensure scalability. 2D: vertices. 3D: more complicated.
- ¾ The scalability of **F** is accomplished by the coarse, primal solver. The quality of the preconditioner determines the rate of convergence but not the scalability.

U N C L A S S I F I E D

Slide 12

Research Program

- ¾ Use existing 2D SEL spectral element code as test bed.
- ¾ Implement FETI-DP as a modification of existing static condensation routines.
- ¾ Study a progression of extended MHD systems as *nx, ny,* and nproc are increased to determine constancy of:
	- condition number
	- Krylov iterations to convergence
	- cpu time per processor
- \triangleright Extend spectral element code to 3D.
- ¾Investigate optimal choice of primal constraints for scalability.

U N C L A S S I F I E D

Slide 13

Test Equation Anisotropic Convection-Diffusion

Scalar PDE

$$
\frac{\partial u}{\partial t} + \mathbf{v} \cdot \nabla u = \nabla \cdot (\mathbf{D} \cdot \nabla u) + S
$$

Velocity Vector and Diffusion Tensor

 $\mathbf{v} = \begin{pmatrix} v_x \ v_y \end{pmatrix}, \quad \mathbf{D} = \begin{pmatrix} D_{11} & D_{12} \ D_{21} & D_{22} \end{pmatrix}.$

$$
D_{11}=d_0,\quad D_{22}=1/d_0,\quad D_{12}=d_1+d_2,D_{21}=d_1-d_2
$$

det $D = 1 + d_2^2 - d_1^2$

Source Term

 $S(x,y) = \sin(m\pi x)\sin(n\pi y)$

Initial and Boundary Conditions

 $u(x, y, t) = 0$ at $x = 0, 1; y = 0, 1; t = 0$

Slide 14

Parallel Scaling Tests

Isotropic Heat Equation

Parallel Scaling Tests

Parallel Scaling Tests Anisotropic Convection-Diffusion Equation

Status of Development of FETI-DP: Past Work

- \triangleright Literature study, equations derived, algorithms formulated.
- \blacktriangleright Code written, compiled, debugged: ~2500 new lines of Fortran 95.
- \triangleright Extensive testing and verification of method on single real processor.
- ¾Operation on parallel Linux clusters; bassi.nersc.gov.
- ¾Scaling tests, comparison to older method of static condensation.
- \blacktriangleright Profiling and optimization: understand where time is going, tune algorithm.
- \triangleright Scalability appears to extend to asymmetric problem, convection-diffusion equation, condition number doesn't scale increase with problem size.
- ¾ Problem: waves, hyperbolic problems.

U N C L A S S I F I E D

Slide 18

Status of Development of FETI-DP: Future Work

- \triangleright Treatment of hyperbolic problems.
- ¾ Physics-based preconditioning applied at the level of vectors and matrices. Preserve flux-source form, adapt FETI-DP implementation. Luis Chacon.
- ¾ Apply to extended MHD, 2D reconnection.
- ¾Extension to $C¹$ triangles, incorporation into M3D.
- ¾Extension to 3D; optimal choice of primal constraints.

U N C L A S S I F I E D

Slide 19

