CEMM Meeting Agenda

9:00 S. Jardin News, Proposal Review discussion, and old milestone review 9:15 S. Jardin $M3D-C^{1}$ update and plans / reconnection update 9:30 Josh Breslau CDX-U new Equilibrium, new M3D results / Error field calculations 10:00 Carl Sovinec NIMROD CDX-U update and other NIMROD Developments 10:30 Break 10:45 Alan Glasser Preconditioning and Scalability with FETI-DP 11:15 Valorie Izzo Disruption Calculations 11:45 Ping Zhu FLR stabilization in extended MHD 12:15 Lunch - (on your own) 1:30 Nate Ferraro 2-Fluid equilibrium with flow 2:00 Hank Strauss Spectral Elements in M3D 2:30 Guo-Yong Fu, Energetic Particle Update and Plans 3:00 Scott Parker Low Moment Kinetic MHD 3:30 Break 3:45Alexei Pankin NIMROD ELM modeling 4:15 L. Sugiyama ELM Modeling and Toroidal effects on Gyrokinetic and fluid models 4:45 Scott Kruger RMP simulations using NIMROD 5:15 D. Schnack SWIM Slow MHD Campaign 5:45 Eric Held LMP Closures 6:15 Jesus Ramos Fluid-Kinetic Parallel Closures and Discussion of Model problems 6:45 all Planning and review of new milestones adjourn --- discussions can be continued over drinks and dinner 7:00

Center for Extended Magnetohydrodynamic Modeling

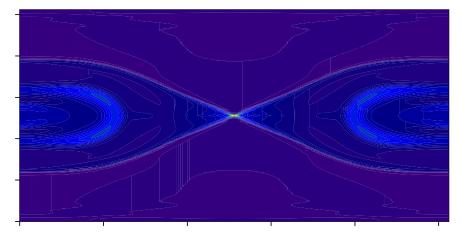
> Rosen Centre Hotel, Salon 11 Orlando, FL November 11, 2007

Reviewer Comments (strengths)

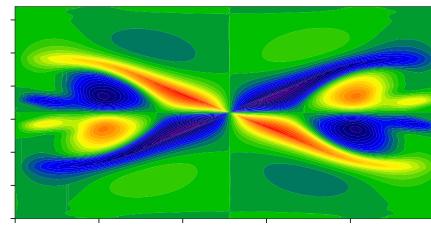
- research team has excellent qualifications in computational plasma physics, and has made excellent progress in recent years: publications and workshops
- state-of-the art techniques being applied to key problems
- NIMROD and M3D effectively use DOE HPC capability
- building on established framework, but proposing significant advances
- comparing with experimental results
- have effective ties with physics community and with some applied math and CS. project will enhance productive interaction between exp, theory, CS
- benchmarking vs analytic results
- benchmarking the two codes against each other is very powerful
- educational benefits are substantial (Grad Students, Postdocs)
- spin-offs demonstrated to space and astrophysics

Reviewer Comments (weaknesses)

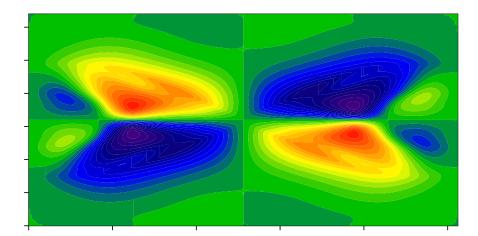
- deficiencies in composition of research team and research methodology
 - case for spectral elements not made
 - did not discuss conservation properties of discretization scheme
 - discussion of time integration very unsophisticated. do not consider global long time accuracy
 - V&V discussion very weak. Comparing results from two codes or from a code to an experiment without some analysis of uncertainty is meaningless. Need to go beyond "picture-norm" and manufactured solutions.
- did not put proposal in context of what other groups are doing
- Overly ambitious. Would rank ELMs, NTM physics, RWM issues highest
- Should consider modeling NB or ICRH stabilized sawteeth
- NTM studies should include such things as ion polarization current, and how these effects scale to ITER parameters
- Can we include 3D wall in RWM studies? Coupling of RWM and ELMs.
- Present discretizations may not be ideal for newer closures.
- Should include TAE modes and impact on energetic alpha transport.

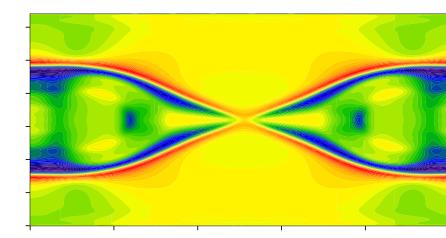

Workshop Planning

- Should we sponsor a workshop next summer?
- Possible topics
 - implicit time advance methods for MHD
 - validation and verification of physics codes
 - computational modeling of ELMs/RWMs
 - RMP physics
 - Closures -2
 - other


M3D- C^{1} update

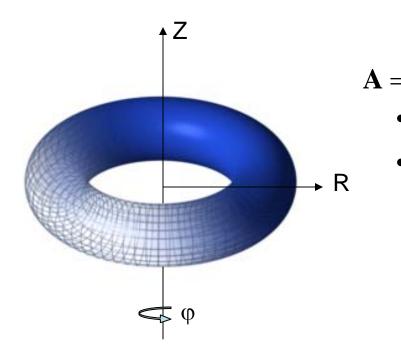
- new time advance
 - improved numerical stability (very high resolution cases now stable!)
 - improved convergence in Δt (especially in steady state...see Ferraro)
- 2D code now toroidal, with fully unstructured triangular elements
 - uses RPI tools to hide parallelism and mesh functions, adaptivity
- 2D code restructured to use SuperLU via PETSc
 - can now easily compare different solvers, natural extension to 3D
- toroidal 2F equilibrium with flow (Ferraro)
- 2D magnetic reconnection with GF
 - now shows good energy conservation
 - initial comparison with NIMROD shows GF inhibits GEM reconnection
 - exploring parameter regime: $\delta \ll \rho_s \ll c/\omega_{Pi}$
- 3D linear and nonlinear equations for matrix elements derived
 - With Breslau, Ferraro, M3D team (50 pages)
 - option being added for complex matrices (3D linear) results by Jan 1?
 - 3D nonlinear iterative solve being implemented


2F GEM Reconnection snapshot at time of maximum velocity (200² nodes)


out-of-plane current

out-of-plane magnetic field

vorticity field


velocity divergence

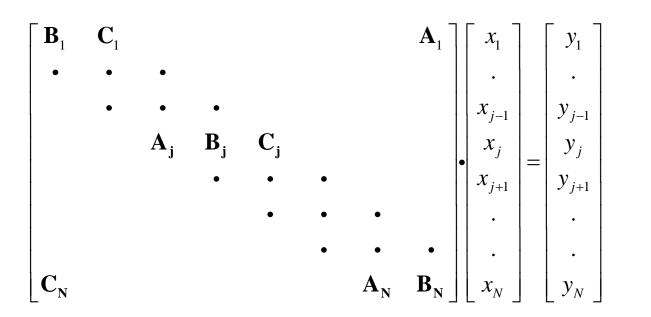
Energy conservation to 1 in 10³, flux conservation exact.

$$\mathbf{M} = \left\{ \rho - \theta^2 (\delta t)^2 L \right\} \mathbf{V}^{n+1} - \left\{ \rho - \theta^2 (\delta t)^2 L \right\} \mathbf{V}^n + \delta t \left\{ \nabla p - \frac{1}{\mu_0} (\nabla \times \mathbf{B}) \times \mathbf{B} \right\} = 0$$

3D M3D-*C*¹

$$L\{\mathbf{V}\} = \frac{1}{\mu_0} \{ \nabla \times [\nabla \times (\mathbf{V} \times \mathbf{B})] \} \times \mathbf{B} + \frac{1}{\mu_0} (\nabla \times \mathbf{B}) \times [\nabla \times (\mathbf{V} \times \mathbf{B})]$$
$$+ \nabla (\mathbf{V} \cdot \nabla p + \gamma p \nabla \cdot \mathbf{V})$$

 $\theta(\theta - 1) \rightarrow \theta^2$


new gauge for A

$$\mathbf{V} = \nabla U \times \nabla \varphi + \nabla_{\perp} \chi + v \nabla \varphi$$

= $R^2 \nabla \varphi \times \nabla f + \psi \nabla \varphi$ p, p_e, ρ
• 8- scalar 3D variables + gauge condition
• 2D triangular C^1 finite elements, FD in φ
 $-\iint dR dZR v_i R^2 \nabla \varphi \cdot \nabla \times \mathbf{M} = 0$
 $\iint dR dZR v_i R^2 \nabla \varphi \cdot \mathbf{M} = 0$
 $\iint dR dZR v_i R^2 \nabla \varphi \cdot \mathbf{M} = 0$

• turn crank for 50 pages

Solver Strategy

- In 2D, solve efficiently with direct solver up to (200)² nodes
- In 3D, leads to block triangular structure

Block Jacobi preconditioner corresponds to multiplying each row by B_{j}^{-1}

$$\Delta^{*}\dot{U} = -R^{2}\left[\frac{\Delta^{*}\dot{U}}{R^{2}}, U\right] + R^{2}\left[\frac{\Delta^{*}\psi}{R^{2}}, \psi\right] + \frac{F}{R^{2}}\Delta^{*}\psi' + \left(\frac{F}{R^{2}}, \psi'\right)$$
$$\nabla \cdot \frac{1}{R^{2}}\nabla_{\perp}\dot{\psi} = -\nabla \cdot \frac{1}{R^{2}}\nabla_{\perp}\left[\psi, U\right] + \nabla \cdot \frac{1}{R^{2}}\nabla_{\perp}\eta\Delta^{*}\psi + \nabla \cdot \frac{1}{R^{2}}\left[\frac{F}{R^{2}}\nabla_{\perp}U' + \eta\frac{1}{R^{2}}\nabla_{\perp}\psi''\right]$$

 $\begin{bmatrix} a, b \end{bmatrix} = \nabla a \times \nabla b \cdot \nabla \varphi$ $(a, b) = \nabla_{\perp} a \cdot \nabla_{\perp} b$ $\nabla_{\perp} a = a_{R} \hat{r} + a_{Z} \hat{z}$ $()' \equiv \frac{\partial}{\partial \varphi} ()$ $\Delta^{*} \equiv R^{2} \nabla \cdot \frac{1}{R^{2}} \nabla_{\perp}$

- solving in linear (~ $e^{in\phi}$) and nonlinear (FD in ϕ) codes as warm-up
- F = constant for reduced MHD (uniform TF0)

 $\iiint \frac{1}{R^2} (\psi, \dot{\psi}) + \frac{1}{R^2} (U, \dot{U}) = -\frac{\eta}{R^2} \left| (\Delta^* \psi)^2 + \frac{1}{R^2} (\psi', \psi') \right|$

energy theorem

FY07 Milestones

- Perform new linear and nonlinear m=1 mode comparison with analytic equilibrium
- ELM studies: detailed comparison between ideal, resistive MHD, 2F
- GEM nonlinear reconnection with guide field
- Scaling studies with NIMROD and M3D beyond 10,000 processors

Table I: Physics Model Development Milestones

Торіс	Year 1	Year 2	Year 3
Analytic test problems	 Define critical tests for 2F equilibrium with flow (FC,PP) Define 2-fluid slab drift tearing test case (FC,EP,PP) 	-Detailed comparison of 2F equilibria with flow with analytic results. (FC,PP) -Define simplified m=1 2F test problem (FC,EP,PP) -Convergence studies of drift tearing (FC,EP,PP)	- Complete 2F drift-tearing and m=1 mode analytic studies and numerical benchmarks (FC,EP,PP)
Stochastic Transport	-Develop chaotic- coordinate technique (PP)	-Compare chaotic- coordinate with non-local conduction in model problem (PP,US)	- Implement chaotic-co- ordinate method in M3D (PP)
Implicit Electron Stress	- Implement the terms that allow non-uniform electron viscosity profiles(EP)	-Implement non-linear terms and begin testing stability (EP,US)	-Evaluate bootstrap current and test for NTM behavior in fluid model (EP, US)
Kinetic-Ion MHD	-Verify the kinetic ion MHD closure model against linear kinetic theory of Alfven, whistler, and ion Landau damping of ion acoustic waves.(UC)	-Compare current closure and pressure closure models for linear and non- linear simulations. Test energy conservation (UC)	 Study ion kinetic effects on the nonlinear evolution of a magnetic island. (UC,US) Comparison with nonlocal parallel closures. (UC,US)
Nonlocal Parallel Closures	-Apply steady-state, parallel heat flow closure in heat transport studies. (US)	- Develop time- dependent, continuum solution of Chapman- Enskog-like, drift kinetic (CEL-DKE) equ. in NIMROD. (US)	Test solution of CEL-DKE by comparing with kinetic-ion MHD closure for ion Landau damping and 2F simulations and theory for drift tearing modes. (US,UC)

Table II: Code and Algorithmic Development Milestones

Торіс	Year 1	Year 2	Year 3
Spectral elements in M3D	-fully implement Spectral Elements in M3D (PP,NY)	-Evaluate and optimize parallel scaling (PP,NY)	-Integrate Spectral Elements with new more implicit time advance in M3D (PP,NY)
M3D-C ¹ development	-Calculate accurate toroidal equilibrium with flow in toroidal geometry (PP)	-Calculate linear 3D stability with spectral expansion (PP)	-Test full 3D implicit solve using block relaxation method. (PP)
M3D Vacuum	- Add Lust-Martinson terms to VACUUM (PP)	-Install VACUUM in M3D (PP)	- Install VACUUM in M3D-C ¹ (PP)
Parallel Scalability	-Implement FETI-DP on 2D structured grid (LA) -Remove the static condensation steps within NIMROD to test SuperLU scaling with larger work-loads per processor (EP)	-Port FETI-DP to other 2D grids (LA) -Assist and evaluate SAP efforts with an incomplete- factorization version of SuperLU. (EP)	-Test FETI-DP in 3D (LA) - Investigate multi-grid (through PETSc) as an alternative preconditioner for poloidal coupling in NIMROD (EP)
NIMROD Basis Functions	 -Continue tests of MHD interchange in comparison with analytical results. (EP) -Formulate implementation of additional DOF for vector fields.(EP) 	-Implement new basis functions for vector fields and compare interchange behavior with original (EP)	-Verify two-fluid drift stabilization of interchange using the new basis functions.(EP)
NIMROD Preconditioning	 -Formulate preconditioning for toroidal coupling in the implicit Hall advance. (EP) -Begin implementation of new algebraic systems with existing preconditioners (EP) 	 -Complete implementation and test in different computations. (EP) -Test use of the new algebraic systems as an additive preconditioning step.(EP) 	-Implement algebraic systems for preconditioning toroidal coupling in the flow-velocity and temperature advances.(EP)
Newton-Krylov (NK) Solves and Time-centered Advance in NIMROD	-NK evaluation in 2D (TX) - Modify NIMROD to provide nonlinear iterations to achieve time- centering and compare with the existing semi-implicit algorithm. (EP)	 -Initial NK in simplified 3D (TX) -Modify NIMROD to compute the residual of a state vector for matrix-free Newton- Krylov. (EP) 	-Full NK in toroidal geometry (TX) -Implement the matrix-free NK method using PETSc to test preconditioning based on NIMROD's existing advance. (EP)

Table III. Application Milestones

Торіс	Year 1	Year 2	Year 3
Sawtooth	-M3D/NIMROD benchmark with CDX-U boundary conditions and parameters (TX,EP,PH,PP)	-Study of 2-fluid effects on sawtooth (TX, EP, PH, PP)	-2-fluid simulations at large S and with energetic particles (TX, EP, PH, PP)
Neoclassical Tearing Mode	-Setup and test equilibrium and closures for neoclassical tearing mode simulations(US (TX,EP,PH,US)	-Begin simulations using nonlocal closures for parallel heat flow and electron stress.(TX,EP,PH,US)	-Continue massively parallel NTM simulations with nonlocal closures (TX,EP,PH,US)
Edge Localized Modes (ELMs)	-Continue verification of M3D and NIMROD with ELITE and extend to 2F and nonlinear (TX,NY,GA)	-Perform nonlinear simulations in ITER geometry (NY,GA)	 -Study nonlinear effect of RMP on ELMs (NY,GA) - Incorporate nonlocal parallel closures (US) .
Resistive Wall	- Setup of ITER double wall in VACUUM (TX,PP,NY)	- Benchmark 2F with MARS (TX,PP,NY)	-Nonlinear simulations in ITER geometry (TX,PP,NY)
Error Field (EF) Studies	Plan and define error field studies for NSTX (PP)	Begin systematic study of EF studies in NSTX (PP)	Produce a publication on EF studies in NSTX (PP)
Disruption Mitigation Studies	Run Argon and Helium simulations for C-Mod (GA)	Complete DIII-D simulations for sym vs. non-sym fueling (GA)	Compare mitigated and unmitigated DIII-D free- boundary disruptions(GA)

Institutions

- (PP) PPPL,
- (NS) MIT-LNS,
- (FC)-MIT-PSFC,
- (NY)-NYU, (
- EP)-U. Wisc. Engin. Phys.,
- (LA) LANL,

- •(US) Utah State U.,
- •(GA) General Atomics,
- •(TX) Tech-X,
- •(UC) U. Colorado,
- •(PH) U. Wisc. Physics.