Self-consistent Modeling of the Pedestal in Tokamak Plasmas

A.Y Pankin¹, G. Bateman¹, C.S. Chang², J. Cummings³, S. Klasky⁴, A.H. Kritz¹, S. Ku², G. Park², N. Podhorszki⁵, D. Pearlstein⁶, R. Samtaney⁷, P. Snyder⁸, C. Sovinec⁹, H. Strauss² CPES and NIMROD teams

¹ Lehigh University, Bethlehem, PA

- ² New York University, NY
- ³ California Institute of Technology, CA
- ⁴ ORNL, Knoxville, TN
- ⁵ University of California at Davis, CA
- ⁶ Lawrence Livermore National Laboratory, CA
- ⁷ PPPL, Princeton, NJ
- ⁸ General Atomics, San Diego, CA
- ⁹ University of Wisconsin, Madison, WI

- Edge Physics in Tokamak
- CPES Framework
 - □ Guiding center XGC0 code code
 - **Gyrokinetic XGC1 code**
 - □ Kepler Workflow for Code Coupling
- Code Coupling Efforts
 - **TEQ Equilibrium Code**
 - **ELITE ideal MHD stability code**
 - □ M3D and NIMROD extended MHD codes
- Simulation of ELM cycle with the XGC code
- Effects of anomalous transport

• Edge Physics in Tokamak

- CPES Framework
 - **Guiding center XGC0 code code**
 - Gyrokinetic XGC1 code
 - **Kepler Workflow for Code Coupling**
- Code Coupling Efforts
 TEQ Equilibrium Code
 - **ELITE ideal MHD stability code**
 - **M3D and NIMROD extended MHD codes**
- Simulation of ELM cycle with the XGC code
- Effects of anomalous transport

Edge Physics in Tokamaks

- The problem requires time dependent, integrated understanding of
 - □ Edge kinetic neoclassical physics
 - Edge ions have steep gradients and non-Maxwellian
 - Edge kinetic turbulence physics
 - Core turbulence and MHD physics
 - □ Large scale edge localized modes (ELMs)
 - Neutral, impurity and atomic physics
 - Scrape-off-layer physics
 - □ Wall load, neutral recycling, and sputtering
 - Energetic particle influx from core
 - RF interaction of edge plasma
 - □ 3D magnetic field effects

Kinetic Plasma in the Edge

- Orbit losses (X-loss)
- Non-Maxwellian ions in pedestal and near scrape-off due to steep gradient
- Non-Maxwellian ions and electrons due to open field lines
- Not a conventional neoclassical plasma

Edge ions are Non-Maxwellian

- Edge Physics in Tokamak
- CPES Framework
 - Guiding center XGC0 code code
 Gyrokinetic XGC1 code
 Kepler Workflow for Code Coupling
- Code Coupling Efforts
 - **TEQ Equilibrium Code**
 - **ELITE ideal MHD stability code**
 - **M3D and NIMROD extended MHD codes**
- Simulation of ELM cycle with the XGC code
- Effects of anomalous transport and classical diffusivity

Kinetic code for tokamak edge simulation

Challenges for Edge Kinetic Modeling

- □ Special treatment for open field lines and divertor geometry is required
- Steep gradient and X-transport generate strong neoclassical E-field and highly non-maxwellian distribution functions
- Neutral collision and ionization plays an important role in the H-mode pedestal build up

XGC : X-point included Gyrokinetic Code

- Full-f particle code for ions and electrons including neutral collisions
- □ XGC0 : Guiding Center code. Average-out turbulent Efield
- **XGC1 : Electro-static gyrokinetic code**

CPES Framework of Multiscale Code Integration

XGC-M3D/NIMROD coupling

XGC0 Edge Kinetic Code

- Long time simulation of kinetic equilibrium and transport
- 5D guiding center dynamics
- 1D solution for electric field: axisymmetric component of E_r
- Ion/electron/neutral, full-f
- Z_{eff} in the current version
- Conserving collisions
- Φ(ψ) electric potential solver
- XGC0 will integrate in all the other physics components
- XGC0 evaluates kinetic bootstrap current, and the corresponding Grad-Shafranov equilibrium B evolution
- Kepler integration framework for automatic coupling of XGC0-Elite-M3D is established for pedestal-ELM cycle
- Integration of DEGAS2 into XGC0 is to produce the first fully kinetic, edge plasma-neutral transport code

XGC1 Edge Gyrokinetic Code

- Particle-in-cell 5D gyrokinetic code in f90
- **3D** solution for electric field
- Integrated neoclassical and turbulence
- Unstructured mesh
- Realistic numerical g_eqdsk geometry with X-point
- Conserving collisions
- Full-f ions and electrons (neutrals with recycling)
- Can run in a mixed-f mode
- (Noise dissipation by physical collisions)
- Heat (particle) flux from core
- Particle source from neutral ionization
- (Heat/particle sink through transport, atomic physics and wall interaction)
- **Solver:** $E_r \neq 0$ at inside and $\Phi = 0$ at wall

Collisions in XGC

Conserving MC Ion-Plasma Coulomb Collision

- □ Monte-Carlo collision with time evolving Maxwellian background
- □ Conserving Collision algorithm : Conserving Energy and Momentum

Z.Lin, W.M. Tang, W.W. Lee, Phys. Plasmas, (1995) W.X. Wang, et. al. Plasma Phys. Contr. Fusion, (1999)

Ion-Neutral Collision

- **Monte Carlo 2D neutral transport**
- **Elastic collision : velocity randomize**

XGC1 will Provide Turbulence Flux to XGC0

First 3D electrostatic solution across separatrix has been obtained from XGC1 2D neoclassical potential distribution has been extracted from 3D by toroidal averaging and poloidal-time smoothing

- Edge Physics in Tokamak
- CPES Framework
 - **Guiding center XGC0 code code**
 - Gyrokinetic XGC1 code
 - □ Kepler Workflow for Code Coupling
- Code Coupling Efforts
 TEQ Equilibrium Code
 ELITE ideal MHD stability code
 M3D and NIMROD extended MHD codes
- Simulation of ELM cycle with the XGC code
- Effects of anomalous transport

Workflow automation

- Automate the data processing pipeline
 - transfer of simulation output to the e2e system, execution of conversion routines, image creation, archival
- and the code coupling pipeline
 - check linear stability and compute new equilibrium on the e2e system
 - run crash simulation if needed
- using the Kepler workflow system.
- **Requirements for Petascale computing**

 - Easy to use Parallel processing
 - Dashboard front-end Robustness
 - Autonomic
- Configurability

_ D X

Monitoring ELITE output on dashboard

DPP APS, November 2007, Orlando, FL

UNIVERSITY

Monitoring M3D output on dashboard

UNIVERSITY

- Edge Physics in Tokamak
- CPES Framework
 - Guiding center XGC0 code code
 Gyrokinetic XGC1 code
 Kepler Workflow for Code Coupling
- Code Coupling Efforts
 - **TEQ Equilibrium Code**
 - **ELITE ideal MHD stability code**
 - **M3D and NIMROD extended MHD codes**
- Simulation of ELM cycle with the XGC code
- Effects of anomalous transport

Generating Equilibrium for MHD Studies

- •TEQ code direct & inverse equilibrium solver
 - -Extracted from CORSICA code as NTCC module
 - -Can be used both for prescribed boundary and free boundary equilibria
 - -Parameterized pressure and current density profiles
 - -Free-boundary TEQ equilibrium solver applied to generate new equilibria, including scrape-off region, for use with non-ideal MHD NIMROD code

#02001

08/03/2006

FEQ g

200000m

TEQ equilibrium solver in XGC

- Advantages relevant to coupling with other MHD codes
 - TEQ module reads eqdsk files that can be easily converted from g-eqdsk files that are recognized by XGC code
 - TEQ module can generate g- and t-eqdsk files during dynamic updates of equilibrium in XGC code
 - g-files are recognized by NIMROD code
 - t-files are recognized by ELITE code
- Dynamic gyro-kinetic modeling with XGC code
 - Advanced in the gyro-kinetic modeling for longer physical times when equilibrium profiles change due to
 - Transition from L- to H-mode
 - H-mode pedestal build up
 - ELM crashes and H-mode pedestal recovery

Coupling of the XGC code with MHD codes such as M3D and NIMROD

Equilibria available in TEQ module

Initial equilibrium profiles that comes with the TEQ module are included in the XGC code

- **D3D**
- NSTX
- CMOD
- MAST
- MAST-SN
- MAST-DN
- ITER
- ITER_FDR
- **FIRE**

- IGNITOR_SOF
- JET
- SSPX_BCS
- SSPX_BCM
- KSTAR
- MST
- PEGASUS
- PEGASUS_SNL
- EAST_SNL
- **TFTR**
- Caltrans code can be used to convert existing g-eqdsk files to TEQ ini files
- DEADSTART" procedure is design to build new design initial configurations within

Equilibrium Solvers in NTCC module library

- Four different equilibrium solvers from NTCC module library (http://w3.pppl.gov/NTCC) has been recently compared in the PTRANSP code
 - It is found that the TEQ code produces the smallest residual error
- Equilibrium error contour plots shown for different solvers

- Edge Physics in Tokamak
- CPES Framework
 - **Guiding center XGC0 code code**
 - Gyrokinetic XGC1 code
 - **Kepler Workflow for Code Coupling**
- Code Coupling Efforts
 - **TEQ Equilibrium Code**
 - **ELITE ideal MHD stability code**
 - □ M3D and NIMROD extended MHD codes
- Simulation of ELM cycle with the XGC code
- Effects of anomalous transport

Coupling with the ELITE linear stability code

- ELITE code is provided by P. Snyder and H. Wilson
- Intermediate to high n (> 5) ideal MHD instabilities
- Extension of the ballooning formalism through two orders in 1/n
- Peeling-ballooning stability bounds

ELITE/NIMROD Benchmarking

113317 bm.data 0.25 321 0.20 Growth Rate (γ/ω_A) - 311 0.15 ELITE 0.10 0.05 0.00 25 15 20 Toroidal Mode Number (n) 0.25 0.2NIMROD ¥ 0.15 0.1 0.05 0 15 0 5 10 20 mode number

- TEQ code was used to alter experimentally based equilibrium computed with EFIT code for the DIII-D discharge 113317 with well resolved pedestal area
- The growth rates computed in ELITE and NIMROD codes agree reasonably well for large toroidal mode numbers
- The ELITE code yields complete stabilization of modes with n<8, while the NIMROD code yields nonzero growth rate for these modes
- Except of this difference, the growth rates agree remarkably well in this case

- Edge Physics in Tokamak
- CPES Framework
 - **Guiding center XGC0 code code**
 - Gyrokinetic XGC1 code
 - **Kepler Workflow for Code Coupling**
- Code Coupling Efforts
 - **TEQ Equilibrium Code**
 - **ELITE ideal MHD stability code**
 - □ M3D and NIMROD extended MHD codes
- Simulation of ELM cycle with the XGC code
- Effects of anomalous transport

ELITE Code Monitors Peeling-Ballooning Stability Conditions

Pedestal buildup by XGC0

Neoclassical dominant pedestal growth (D_{Anom}= 0.05m²/s, ballooning)

Type-I ELM unstable around 70τ

Coupled XGC0-MHD simulation of ELM cycle

Coupled XGC0-MHD simulation of ELM cycle

- Edge Physics in Tokamak
- CPES Framework
 - **Guiding center XGC0 code code**
 - Gyrokinetic XGC1 code
 - **Kepler Workflow for Code Coupling**
- Code Coupling Efforts
 TEQ Equilibrium Code
 ELITE ideal MHD stability code
 M3D and NIMROD extended MHD codes
- Simulation of ELM cycle with the XGC code
- Effects of anomalous transport

Effect of Anomalous Transport

Model for Anomalous Diffusion XGC0

Summary

- Recent advance in the CPES project are presented
- XGC framework for code couping
 - Guiding center XGC0 code is used as a kernel for plasma edge simulations
 - □ Direct equilibrium solver TEQ generate new equilibrium solution as plasma profiles evolve in XGC0
 - □ Ideal MHD linear stability code ELITE is used to verify peeling-ballooning stability properties of the plasma profiles computed with XGC0
 - □ M3D and NIMROD code used for modeling of evolution of ELM crashes
 - □ Gyro-kinetic XGC1 code will provide information on anomalous fluxes to XGC0
- All codes are coupled through the Kepler workflow
 - Effects of anomalous transport are studied with XGC0
 - □ Formation of flow shear profiles at the plasma edge is associated with the formation of edge transport barrier

Last Slide