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THE PARALLEL CLOSURE PROBLEM CONCERNS THE EVALUATION OF THE
CHEW-GOLDBERGER-LOW (GYROTROPIC) PART OF THE STRESS TENSOR:
PCGL = pL| + (p|| —pL)bb = pl + (p|| —pL)(bb — |/3),

with p = (2pL+p))/3.

(Species indices will be omitted when equations apply to either species or to the ions.
The electron species index will be made explicit in the simplified form of the electron

equations after taking the small electron mass limit.)



KEEPING O(pus, /L) +O(ppvi,/L?) IN A FINITE-LARMOR-RADIUS, FAST DYNAM-
ICS ORDERING [i.e. 9/0t = O(p,Qu/L) + O(p*Q,/L*) and u = O(vy,) + O(p,vy,./L)], THE

EVOLUTION EQUATIONS FOR THE COMPONENTS OF P¢““’ ARE:

3[‘919
2L0t
+PY  (Vu) + V-qu —¢g™ =0

and

Ap| —pL)
ot

+ V- {(pH —pl)u] + (p”—pL){b- [(b-V)u]—i—V-u/3}+

+ p{b : [3(b . V)U} -V 11} + V- {(SQBH — q||)b] + 3((]|| — qBH)b . V(ln B) +

+3b - PY - (b x w) — P¥" : (Vu) + V- (3qz. —q1) — 6ap. - & + 3(q — gp))o + g — 3g55"

+V-(pu)] + pV-u + (p||—pL){b-[(b-V)u}—V-u/?)} + V-(qnb)—l—

Here, the non-gyrotropic, FLR terms P%", q,, qp, and ¢ are known (except for a non-

Maxwellian contribution to q, and qp,). For the electrons, P”" and ¢ can be neglected.



Specifically,
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where the m — 0 limit can be taken for the electrons.



The non-Maxwellian contributions q;, and qg, to the perpendicular heat fluxes are:
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and
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where

A = ) [dv v —ul v =l = b (v — w2} [fO1v) = fau(v)],
A = (m22) [div v —ul b (v =) [fOv) = fru(v)],

iy = (mP/4) [dv v —ua = [b-(v—wP} {5b- (v —w] — v —uP} [fOW) - faur(v)] .
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Besides 77, 7 )

and r,’, the parallel closure terms that must be provided by kinetic

theory are the two independent parallel heat fluxes:

q = (m/2) [d’v[v—u)-b]|v—ul’ [,

gp| = (m/2) [d’v [(v—u)-b]’ f.

(And the pressure anisotropy, also called ”parallel viscosity”:

py—p1 = (m/2) [dv {3[(v—u)-b] —|v—ul’} f,

if one chooses not to use its fluid theory evolution equation.)



DRIFT-KINETIC EVALUATION OF THE FLUID CLOSURES

1.) All the yet unknown terms needed to close the two-fluid system can be derived
from moments of the gyrophase-averaged distribution functions, f.

2.) The velocity moments of f needed for the fluid closure are evaluated most conve-
niently in the moving frame of the full macroscopic flow velocity, u(x, t).

3.) For the fast dynamics under consideration, with large perpendicular electric fields
E, ~ vy, B, the drift-kinetic equation must be derived in a moving frame close to the
electric drift velocity up(x,t) = E x B/B?, such as ug(x,t) itself or u(x,t).

4.) To determine the collisional moments in a low-collisionality regime (v, & w,) and
the perpendicular heat flux closure terms q, and qp, within the required accuracy, only
the lowest-order or zero-Larmor-radius distribution functions f = f(¥) are needed.

5.) To determine the parallel heat fluxes and the pressure anisotropy (or the coefficient
functions in their evolution equations) within the required accuracy, first-order FLR

solutions of the drift-kinetic equation, f, = f¥) + ), are necessary.



A FINITE-LARMOR-RADIUS FORM OF THE DRIFT-KINETIC EQUATION HAS
BEEN DERIVED, THAT MEETS THE DESIRED CONDITIONS FOR EVALUATION
OF THE FLUID CLOSURES:

Accurate to the first FLR order in the fast dynamics ordering and valid for sonic

macroscopic flows.

Use of the full macroscopic flow velocity, u(x,t), to define the moving frame. Exact

algebraic elimination of the electric field and no reference to ugp or any other drifts.

Formulation in terms of the standard MHD variables (macroscopic flow velocity and

magnetic field) only. This facilitates the coupling to the extended-MHD formalism.

Velocity moments reproduce all the previously derived fluid results, including the

higher-moment FLR results.



Our FLR drift-kinetic equation is [with v/ = v — u(x, t)]:
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where the coefficient functions are:
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THE FluId AND DRIFT-KINETIC EPVATIONS SHOWN
MAKE THE FOLLOWING DIAGRAM COMMVUTATIVE,

INCLUDING THE FIRST-ORDER FLR TERMS FoR
SONIC-SCALE TImME EVOLTION AND MEAN Flows:
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FOR SMALL-MASS ELECTRONS AND USING AS PHASE-SPACE VARIABLES

THE MOVING FRAME KINETIC ENERGY ¢’ = m (v +v7)/2 AND MAGNETIC
MOMENT /' = m.'2/(2B) :
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IF THE PERPENDICULAR ELECTRIC FIELD, HENCE THE PERPENDICULAR
FLOW VELOCITY, WERE SMALL (i.e. E, ~ dvyB and u, ~ dvy,), THE DRIFT-
KINETIC ANALYSIS COULD BE CARRIED OUT IN THE LABORATORY FRAME.
THEN, USING AS PHASE-SPACE VARIABLES THE LABORATORY FRAME KI-
NETIC ENERGY ¢ = m(v] + v})/2 AND MAGNETIC MOMENT 4 = mv?/(2B), THE
ELECTRON DRIF-KINETIC EQUATION BECOMES:
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in agreement with the conventional analyses.



