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Overview

• We are using M3D-C1 to calculate axisymmetric toroidal steady-states of a compre-

hensive two-fluid model.

• These steady-states are steady on all timescales self-consistently include two-fluid ef-

fects, gyroviscosity, flow, and anisotropic transport.

• In particular, we would like to understand the effects of two-fluid terms and gyrovis-

cosity on the steady-states.

• These steady-states may be used as accurate equilibria for three-dimensional stability

studies.
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Physical Model
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Digression: Interpretation of Gyroviscosity

• Ramos shows that dominant contribution of Π∧ (absent parallel gradients) is

∇ · Π∧ ≈ −mnu∗ · ∇u

where
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• Braginskii shows that difference between fluid drift velocity and average gyro-center

drift velocity is

u − 〈vc〉 = −
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 = u∗

• Therefore,

mnu · ∇u + ∇ · Π∧ ≈ mn(u − u∗) · ∇u = mn 〈vc〉 · ∇u

• “Gyroviscous cancellation” cancels fluid drifts from inertia.
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Method

• The simulation is initialized with a solution to the Grad-Shafranov equation.

• A loop voltage is applied by changing the flux at the boundary of the simulation

domain at a constant rate ψ̇ = VL/2π.

• A localized density source is included to offset diffusive flux out of the simulation

domain.

• The simulation is run until a steady state in all hydrodynamic quantities is reached

(may not be stationary).

• η = η0T
−3/2. The vacuum region is simply a low temperature region outside the

separatrix.
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Radial Flows

• Pfirsch-Schlüter theory of radial flows is well satisfied.

• Radial flows are proportional to η and VL.
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Toroidal Flow: Edge Flows
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Toroidal Flow: Core Rotation
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Poloidal Flow
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Parallel Viscosity

• Collisional parallel viscosity damps poloidal flows.

• Does not damp toroidal flows.

µ‖ = 0 µ‖/µ⊥ = 105
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Conclusions

• We have been able to obtain self-consistent steady-states of the extended-MHD equa-

tions for realistic plasma configurations with free boundaries.

• The flows observed in the steady-states are in good agreement with Pfirsch-Schlüter

theory.

• Strong up-down antisymmetric toroidal edge flows exist in highly resistive SOLs.

• Hall term and electron pressure gradient have little effect on steady-state.

• In highly resistive, low viscosity case, gyroviscosity may lead to persistent, large-scale

oscillations.
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Future Work

• Better modeling of edge/SOL

– Realistic boundary shapes/conditions

– Pedestal modeling for H-mode

– “Rice Scaling” for spontaneous rotation MA ∼ βN .

• Need some model for neoclassical parallel viscosity (bootstrap current).

• Coupling to realistic transport models (TGLF?)

• 3D nonlinear simulations


