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Motivation for continuum solution to closure 
problem.

 Treat time-dependent problems such as Landau damping or coupling 
of closures to rapidly evolving instabilities.

 Easily incorporate nonlinearities and particle trapping effects. 

 Increase the efficiency of the closure calculation.

 Incorporate accelerations effects. 

●  Solve lowest-order Chapman-Enskog-like drift kinetic equation:
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Simplify.

● Consider solving CEL-DKE by expanding F =  Fi (x,t) i( v||, v) :
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●  Acceleration and collision terms, C
(-L) 

(F + f
M
), couple velocity expansion 

   coefficients in speed variable, v.

●  Preliminary implementation ignores acceleration term and uses
   a moment approach for C

(-L)
 (J-Y Ji's work and J. James' thesis). 



   

Existing implementation solves for coefficients 
of F expansion on grid in s=v/v

T
.

 Expanding F =  F
l 
(x,v,t) P

l 
(v|| / v) yields:
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− Matrices A, B, and L represent free-streaming, |B| and pitch-angle 
collisional couplings, respectively.

− With Lorentz pitch-angle scattering operator, speed enters as a 
parameter only.

− Solve equation  on grid in s.



   

Coupling to the fluid equations: time 
discretization and parallelization issues (I).

 Nimrod uses staggered advance.

V n , B ,T 

●  For parallel heat flow closure, can couple fully implicit solves for T and F.

●   Must solve simultaneously for coefficients, F
l 
, on speed grid, s

i 
, i=1,...,n.

●  Closure moment q
||
 couples to T equation.

●  Leads to large system of equations with “ parallelization”  performed 
    inside solver.
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Coupling to the fluid equations: time 
discretization and parallelization issues (I).
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Applied to heat transport problem in cylindrical 
geometry (Hölzl et al., POP 2008).

2/1 island added into zero pressure, cylindrical eq.
Heat source finite for r < 0.2 and zero outside.



   

Can solve for T coupled to F equations.

 T profiles as function of flux
show flattening across 2/1
island.

 All cases used 3 Fourier 
modes and 10 x 10 grid.

 Predicted T from continuum
solution spatially accurate for
bicubic (pd=2) finite elements.

 Here  chosen to yield 
heat flow consistent with 
Braginskii closure with large
parallel conductivity.

 Solution not resolved in 
velocity variables!

pd=2, continuum solution using
F

1
 and F

2
.

pd=2, T-only.

pd=5, T-only.
T flattening
across island.



   

Generalize velocity space basis to include 2-D 
finite elements.

 Expand F =  Fi (x,t) i( , ) , where  and  are appropriate velocity 

variables and insert into CEL-DKE:

 Integrate equation using 

 Use NIMROD finite element and Gaussian quadrature machinery to 
compute velocity integrals.

 Consider C0 or possibly discontinuous basis functions.

 Requires new data types and solver development.
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Future work.

● At present, can couple solution for coefficients of Legendre 
expansion, F

l
(x,t), on grid in s to T in fully implicit advance.

● Future work includes:

- testing convergence of fully implicit advance as Legendre     
polynomials and grid points in speed are added.

- implementing staggered advance and comparing with fully  
implicit solutions.

- generalizing continuum solution to allow for 2-D finite-element 
basis functions for velocity dependence.


