M3D-C¹ Linear Stability Benchmarking

S. C. Jardin¹, N. Ferraro¹, X. Luo², J. Chen¹, J. Breslau¹, M. Chance¹, K. E. Jansen², and M. S. Shephard²

¹Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton NJ 08543 ²Rensselaer Polytech Inst, Sci Computat Res Ctr, Troy, NY 12180

Presented at

CEMM Meeting

Dallas, TX

November 16, 2008

Features of M3D- C^{1}

- Two-Fluid MHD with Hall physics and Gyroviscosity
- Efficient scalable implicit time-stepping with time step independent of zone size
- High-Order (5th) finite elements (in plane) with continuous first derivatives (C^1 continuity)
- Fully unstructured mesh with adaptive capability
- Can solve subsets of 2-field or 4-field reduced MHD instead of full (8 field) equations

Linear Stability Studies with $M3D-C^{1}$

Intermediate step to the full nonlinear calculations for code verification and to explore new physics:

- Can linearize about two-fluid equilibrium with flow
- Two-fluid or resistive MHD evolution equations
- (high resistivity) vacuum region separating plasma and (resistive) wall
- Mesh packing and adaptation

Initial benchmark is to reproduce ideal MHD limit in a free boundary plasma (surrounded by vacuum)

Should be able to approach ideal limit as:

- resistivity transition width $\Delta_{\eta} \rightarrow 0$
- resistivity transition location $\Psi_{\eta} \rightarrow 1$ (P/V interface),
- plasma resistivity $\eta_P \rightarrow 0$,
- vacuum resistivity $\eta_V \rightarrow \infty$

Initial convergence study varied η_V and η_P

$$\eta = \eta_P + \eta_V \left\{ \frac{1}{2} + \frac{1}{2} \tanh\left[\frac{\psi - (\psi_{\lim} + \varepsilon_{off} \Delta \psi)}{\varepsilon_{\delta} \Delta \psi}\right] \right\}$$
$$\Delta \psi \equiv \psi_{\lim} - \psi_0$$
$$\varepsilon_{off} = \varepsilon_{\delta} = .05$$

Growth rates for n=1 mode for equilibrium with $q_a = 3.2$, $\beta_N = 4.92$

η_{P}	$\eta_V = 0.5$	$\eta_{V} = 1.0$	$\eta_V = 2.5$
10-7	.69876	.7086	.71877
10 ⁻⁸	.69875	.7085	.71875
10 ⁻⁹	.69875	.7085	.71875

Small dependence on η_V not entirely satisfactory! 5/15

n=1 mode, ideal li	Variables mit and this i	Variables are initialized with a certain up/down parity, and this is preserved if equilibrium is symmetric		
$\eta_{VACUUM} = 0.5$	A = 3			
η_{PLASMA} = 5.×10 ⁻⁸	1.01 < q < 3.32	$\mathbf{V} = R^2 \nabla U \times \nabla \varphi + \omega R^2 \nabla \varphi + R^{-2} \nabla_{\perp} \lambda$		
Even parity in U	$\beta_{N} = 4.92$	$\mathbf{B} = \nabla \psi \times \nabla \varphi - \nabla f_{\varphi} + I \nabla \varphi$		
U: -5.7 E-8 $ ightarrow$ 8.9 E-8	(0) : -3.18E-7 \rightarrow 3.27E-7	χ : -5.30E-9 → 5.30E-9	p: -7.04E-7 → 7.04 E-7	
	*			
ψ : -1.38E-7 \rightarrow 1.38E-7	l : -5.31E-7 →5.31.E-7	f : -3.89E-9 $ ightarrow$ 3.88E-9	$\Delta^{*}\psi$: -7.5E-5 \rightarrow 7.5E-5	

Perturbed field extends into vacuum but perturbed currents do not

Spatial convergence study used 3 mesh resolutions

3557 nodes

6185 nodes

24697 nodes

Same converged growth rate for 3 mesh resolutions

Vertical scale (γ): 0 - 1

Vertical scale (γ): 0.5 – 0.6

What is the residual mode?

Appears to be two modes with same growth rate rotating in opposite directions

Mean growth rate and frequency not sensitive to numerical parameters.

v: $10^{-6} \rightarrow 10^{-7}$ S_P : 10⁶ \rightarrow 10⁷

 $\Delta t: 0.5 \rightarrow 1.0$

Zone size doubled

New features now being implemented in $M3D-C^{1}$

- Arbitrarily shaped domain boundary (axisymmetric vacuum vessel shape)
- Zone packing by specifying anisotropic mesh size function as arbitrary function of the equilibrium flux function.
- resistive wall

Will soon transition into fully nonlinear 3D 2F MHD code.

