3D MHD disruptions simulations of tokamaks plasmas

R. Paccagnella1, H. Strauss2, J. Breslau3

¹ Ass. Euratom/ ENEA Consorzio RFX and CNRPadova, Italy

2 New York University Courant Institute of Mathematical Sciences

3 Princeton Plasma Physics Laboratory Princeton (NJ)

Motivations

- For ITER construction it is needed to know how big will be the
- horizontal unbalanced forces due to asymmetric VDEs/Disruptions

- ITER **should NOT** have disruptions in the **(D-T) phase**
	- **->** Disruptions physical mechanisms should be clarified and avoidance techniques developed

where

 $\mathbf{v}_{e}^{*} = -\frac{\mathbf{B} \times \nabla p_{e}}{n e R^{2}}, \quad \mathbf{v}_{i}^{*} = \mathbf{v}_{e}^{*} + \frac{\mathbf{J}_{\perp}}{n e},$ $\mathbf{v} \equiv \mathbf{v}_i - \mathbf{v}_i^* = \mathbf{v}_e - \mathbf{v}_e^* + \frac{\mathbf{J}_{\parallel}}{\mathbf{v}_{\perp}}$

Boundary conditions

$$
B_v = \nabla \psi_v \times \nabla \phi + \nabla \lambda + I_o \nabla \phi
$$

Vacuum magnetic field

$$
(\frac{\partial \psi_{v}}{\partial n})_{i} = \sum_{j} K_{ij}^{o} \psi_{pj} + S_{i}
$$

$$
(\lambda^{n})_{i} = \sum_{j} K_{ij}^{n} (\mathbf{B}_{p} \cdot n)_{j}
$$

 $CDINI$ C 1

$$
\frac{\partial \psi_{w}}{\partial t} = \frac{\eta_{w}}{\mu_{o} \delta_{w}} \left[\frac{\partial \psi_{w}}{\partial n} \right]
$$

$$
\frac{\partial B_{n\,pw}}{\partial t} = \frac{\eta_w}{\delta_w} \left[\frac{\partial B_{nw}}{\partial n} \right]
$$

Virtual "case"

VIRTUAL CASING METHOD

The source term S_{i} can be obtained from the applied external currents, or else using the ``virtual casing" method.

In this method we first perform an ideal equilibrium calculation, with $\psi=0$ on the boundary.

Then equating

$$
\frac{\partial \psi_{v}}{\partial n} = \frac{\partial \psi_{p}}{\partial n}
$$

the source term required for equilibrium is found from

$$
S = \frac{\partial \psi_p}{\partial n} \qquad \textcircled{a t=0}
$$

where the right side is obtained from the ideal equilibrium.

THE MESH : PLASMA AND EDGE REGIONS

The mesh is builded in the tworegions:

Inside the separatrix (plasma with low resistivity)

and outside the separatrix(plasma with resistivity**100-1000 times larger**)

The mesh can be structured (field aligned) or unstructured

RWM LINEAR BENCHMARK AGAINST MARS (&CHEASE)

(the benchmark and runs are done with the **OMP M3D version**)

ITER REFERENCE SCENARIO

 $(y=φ$ tor. angle and $x=l$ poloidal length)

ITER Advanced Scenario

N $\beta_{\text{N}} = 3.5$ RWM unstable

- Current localized at the edge
- Resiliance to VDE
- signs of n>1 activity

Current localization

Jwn nax 0.12E+00 min -0.11E+00 t= 422.34

ITER Advanced Scenario

Perturbed toroidal field

• Convergence problems :

Localization of magnetic field and current (generally at the edge) can make the simulation to blow up

Toroidal Peacking and halo fraction

$$
I_h(\phi) = \frac{1}{2} \int |n \cdot J| R \, dl
$$

Halo current: normal current at the wall

$$
TPF = \frac{I_h^{\max}}{I_h} = \frac{I_h^{\max}}{\frac{1}{2\pi} \int I_h(\phi) d\phi}
$$

Toroidal peacking Factor

$$
F_h = \frac{}{} = \frac{\int I_h(\phi) \, d\phi}{\int J_\phi \, dR \, dZ \, d\phi}
$$

Halo fraction

Toroidal Peacking vs halo fraction

When the current quench precedes the thermal quench **(normal VDE)**, the high beta produces a relatively **high TPF** (modes are more unstable).Since the current was already

partially lost, the **hcf is not**particularly **high**.

Vix. versa if the thermal quench happens first **(standard disruption)**the **TPF** becomes **lower** (external kink is mitigated) but the **hcf can be**relatively **high** due to the high current still flowing in the plasma.

Conclusions

- Relatively slow disruptions driven by RWMs have been studied in 3D(dominants n=0,1)
- linear benchmark of M3D with MARS is ok
- Qualitative trends that confirm experimental findings are found. Figure of merit (TPF*hcf) for ITER seems appropriate

PROBLEMS still to be addressed:

- Lundquist in simulations much lower (up to 10⁵) than in experiments
- Numerical convergence is critical (especially for the advanced scenarios)
- **Fully parallel MPI simulations are required**