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Outline

* Model equations with drift kinetic electrons
* Including gyrokinetic electrons
* Implicit algorithm
* Linear tests of the model
* GEM TAE results showing energetic particle destabilization 
	 and damping due to kinetic core ions



Motivation

• Current Gyrokinetic-Maxwell Equations in use are not fully electromagnetic

– The A‖ − φ field model does not have δB‖

• Use of the quasi-neutrality condition for determining φ might requires terms
nonlinear in φ, because the polarization density ∼ k2

⊥φ is very small form
long wavelength modes.

• More accurate GK equations needed but might not be solvable in the edge
or ITB with strong “equilibrium” variations in

– E × B flow of thermal speed

– density or temperature over ∼ 10ρi

• For ETG simulations with non-adiabatic ion, N -point averaging with N �
4 is needed. It could be easier to follow the gyro-motion.



The Vlasov ion/Drift kinetic electron model

Vlasov ions:
dvi

dt
=

q

mi
(E + vi × B),

dxi

dt
= vi

Drift kinetic electrons: ε = 1
2
mev

2

dx

dt
= vG ≡ v‖

(

b +
δB⊥

B0

)

+ vD + vE

dε

dt
= −evG · E + µ

∂B

∂t
,

dµ

dt
= 0

Ampere’s equation

∇× B = µ0(Ji − ene(Ve⊥ + u‖eb))

Ve⊥ =
1

B
E × b − 1

enB
b ×∇P⊥e

Ji =

∫

fiv dv, u‖e =

∫

fe v‖ dv, P⊥e =

∫

fe
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mev

2 dv

Faraday’s equation,
∂B

∂t
= −∇× E



• Quasi-neutral

– No displacement current in the Faraday’s equation

• No transverse electron inertia (no electron polarization current). Electron
FLR and polarization current can be added for reconnection problems.

• The magnetic field perturbation is 3-D, whereas in the A‖− φ model δB =
∇× (A‖b) is 2-D

• Unable to combine A‖ − φ field model with Vlasov ions. With GK ions φ
is obtained from GK Poisson equation. With Vlasov ions the equation

ni = ne

does not determine φ! However, taking time derivative of this equation to
the second order results in

n0q

mi
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e

me
∇‖E‖

= ∇ ·
(

1

me
∇ · Pi −

qn0

mi
Vi × B

)

− 1

me
∇‖

(

δB

B
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+
Ė× b

B
· ∇n0

We have not been able to produce the Alfven waves solving this equation.



Frieman-Chen Electron GK Equation in E1 and B1

• Gyrokinetic equations are usually derived in terms of A and φ, to make explicit the ordering

∂A

∂t
∼ εδ∇⊥φ

• The Frieman-Chen gyrokinetic equation, assuming isotropy (∂F0/∂µ = 0),

L̂gδH0 ≡
(

∂

∂t
+ v‖b · ∇ + vD · ∇

)

δH0 = − q

m
(SL + 〈RNL〉),

where δH0 is related to the perturbed distribution δF through δF = q
m
φ∂F0

∂ε
+ δH0

SL =
∂

∂t
〈φ − v · A〉 ∂F0

∂ε
−∇〈φ − v ·A〉 × b

Ω
· ∇F0,

〈RNL〉 = −∇〈φ − v · A〉 × b

Ω
· ∇δH0.

• Define δf = q
m
〈φ〉 ∂F0

∂ε
+ δH0. The gyrokinetic equation for δf is, written in terms of E1

and B1
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• The perturbed electron diamagnetic flow comes from δf ,

n0VD(x) =

∫

(v‖b + v⊥(R′, ε, µ, α))δf(R′, ε, µ)δ(x −R′ − ρ) JdR′ dε dµ dγ

n0VD is computed by depositing the particle current along the gyro-ring. In the drift-

kinetic limit VD reduces to the electron diamagnetic flow.

• The electron E × B flow comes from the first term in δF ,

n0VE(x) =
q

m

∫

v (φ(x) − 〈φ〉 (x − ρ, ε, µ))
∂F0

∂ε
Jdεdµdγ

in eikonal form,

n0VE = n0

h

B0

δEk × b

with b = k2
⊥v

2
T/Ω2 and

h(b) = − 1

b2

∫ ∞

0

e−x2/2bJ0(b)J
′
0(b)x

2 dx

In the limit of small kρ � 1 the factor h(b) become unity, so that n0VE become the total

guiding center E×b flow.



Convert Ampere’s Equation into Ohm’s Law

Starting with Ampere’s equation

∇× B = µ0(Ji − ene(Ve⊥ + u‖eb))

Taking derivative w.r.t. time,

∇× ∂B

∂t
= µ0

(

∂Ji

∂t
− ene(

∂Ve⊥

∂t
+

∂u‖e

∂t
b)

)

Only use the parallel component of this equation! Use Faraday’s equation for
LHS, and electron momentum equation,

mene
∂u‖e

∂t
+ ∇‖δP‖e + δB · ∇P‖e0 + eneE‖ = 0

And neglect b · ∂Ji
∂t

(smaller by mass ratio), to obtain parallel Ohm’s Law

enE‖ +
me

µ0e
b · ∇ ×∇× E = −∇‖δP‖e −

δB

B
· ∇P‖e0

The remaining two components of the Ampere’s equation are rewritten as

enE⊥ = − 1

µ0

b× (∇× B) − Ji × b −∇⊥δP⊥e



Explicit time evolving is unstable at small k⊥ due to
the compressional Alfvén wave

Combine the momentum equation and the Maxwell equations to obtain Ohm’s
law:

enE⊥ = − 1

µ0

b× (∇× B) − Ji × b −∇⊥δP⊥e

enE‖ +
me

µ0e
b · ∇ × ∇× E = −∇‖δP‖e

∂B

∂t
= −∇× E

δf method for ions and electrons

d

dt
δfi = −qE · vif0i

d

dt
δfe = −

(

vE + v‖
δB⊥
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)

· ∇f0e +

(

−eE‖v‖ + µ
∂B

∂t

)

f0e

For ρi scale instabilities k⊥ρi ∼ 1, β ∼ 1%, the compressional wave frequency
ω/Ωi ≥ 10, Ωi4t << 0.01 is needed! We would like to be able to use Ωi4t ∼
0.1, i.e., just small enough to get the gyro-motion.



Implicit Scheme

δBn+1 − δBn

4t
= −∇× En+1

En+1
⊥ − 4t

β
b× (∇×∇×En+1) = −∇⊥δP

n+1
⊥e − 1

β
b × (∇× δBn) − J∗

i⊥ × b − δJ⊥i × b

En+1
‖ +

me
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1

β
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‖e

• Particle coordinates and electron weights (hence pressure) explicitly ad-
vanced.

• Ions weights first advanced without E⊥ then used to gather J∗
i⊥

w∗
i = wn

i + qEn
‖ v‖4t

• After fields solved, update ion weights

wn+1
i = w∗

i + qEn+1
⊥ · v⊥4t



Implicit Scheme (cont’d)

• It turns out necessary to treat the increment to J⊥i due to En+1
⊥ fully im-

plicitly

δJ⊥i(x) = 4t
∑

j

qEn+1
⊥ (xn+1

j ) · vn+1
j S(x − xn+1

j )

δJ⊥i(x) ≈ q ni 4tEn+1
⊥ (x) ≡ δJ′

⊥i

• Iterate on the difference between δJ⊥i and δJ′
⊥i

• 3 ∼ 4 iterations are accurate enough



3-D Shearless Slab Alfven Wave Simulation

32 × 32 × 32 grids, 1, 048, 576 particles per species
For shear Alfvén wave, k⊥ = 0, k‖ρi = 0.00626, initialize with δB⊥.
For compressional Alfven wave, k‖ = 0, k⊥ρi = 0.019, initiallize with δB‖.
Shear Alfvén cold plasma dispersion relation obtained with the Hall term in
the Ohm’s law

ω2

k2
‖

=

(

1 − ω

ωci

)

v2
A



∇Te Driven Kinetic Alfven Instability

∂f1

∂t
+ v‖∇‖f1 = κ(Ey + v‖Bx)f0 + (−E‖v‖ + µ

∂B‖

∂t
)f0

E‖ +
me

mi

1

β
b · ∇ ×∇× E − κTBx = −∇‖δP‖e

E⊥ +
1

β
b × (∇× B1) = −Ji × B −∇⊥δP⊥

∂B1

∂t
= −∇× E

κ = κT (mv2/2 − 3/2), κT = − 1
T

∂Te
∂x



∇Te Driven Kinetic Alfven Wave

• kx = 0, kyρs = 3.5, k‖ρs = 0.00284. δp⊥e = 0 for simulation data points
and dispersion replation (solid black line).

• Green line from dispersion relation with δp⊥e, which has strong stabilizing
effect at high beta.

• Red line from A‖/φ gyrokinetic dispersion relation. Good agreement with
δp⊥e = 0 Vlasov ion DR, because in GK model only parallel Ampere’s
equation is used.



SUMMARY

• We proposed a kinetic simulation model with Vlasov ions/Drift kinetic elec-
trons which is

– Quasi-neutral and fully electromagnetic

– suitable for MHD scales, edge or ITB plasmas with strong E × B flows

• The time step for explicit integration limited by the compressional Alfvén
wave

• Semi-implicit scheme allows Ωi4t ≥ 0.1

– Treat Faraday’s law and E⊥ · v⊥ in the ion weight equation implicitly

• Demonstrated 3-D shearless slab simulation for compressional and shear
Alfvén waves, and whistler and Kinetic Alfvén instabilities driven by elec-
tron temperature gradient, and the ion accoustic waves.



The MHD equations for the shear Alfvén wave

Quasi-neutrality
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MHD TAE equation

0
2( )

i
i e

n m n n
B r

φ δ δ⊥−∇ ⋅ ∇ = −v

||
0 0

ˆ 0ii un n B E b n
t B

δ∂
+ ⋅ ∇ + × ⋅ ∇ =

∂

rv

|| ||
0

( )
( ) 0i e

i e

u u
n n n B

t B
δ δ

−∂
− + ⋅∇ =

∂

v

2
|| 0 0 || ||( )i eA qn u uμ⊥−∇ = −

}

|| ˆ 0
A

b
t

φ
∂

+ ⋅∇ =
∂

2
2

2 2

1 1 ˆ
( )A

B b
t V r B

φ φ⊥ ⊥

∂
∇ ⋅ ∇ = ⋅∇ ∇ ⋅∇

∂

v
v



Simulation parameters

Basic parameters:

Profile:

Plasma to magnetic pressure ratio and mass ratio:

Simulation domain:

External drive:
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Add external n=2 current for 200 steps, then observe the subsequent oscillation 
and mode structure 
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Simulation results with 2-fluid model

The global mode structure is observed
The mode frequency falls in the gap predicted by Fu and Van dam (1989)
The mode frequency is well above the lower continuum branch

Different poloidal harmonics of the electric potential Comparison with theoretical calculation



Benchmark with eigenmode analysis

• The simplified form: 1 ˆ ˆ~ , ~B b b
B z

∂
⋅∇ ⋅∇       ⋅∇

∂

v

• Eigenmode calculation:

contour plot of electric potential from simulations contour plot of electric potential from eigenmode analysis

0 || ||
ˆ( ) ( ) 0i e i en n n b u u

t
δ δ∂

− + ⋅ ∇ − =
∂

In simulations, continuity 
equation becomes:

2
2

2 2

1 ˆ ˆ
A

b b
V t

φ φ⊥ ⊥

∂
∇ ⋅ ∇ = ⋅ ∇ ∇ ⋅ ∇

∂

0

0 .5%ω
ω
Δ

<



Driving effect from energetic particles and damping 
effect from kinetic core thermal ions

There is a linear scaling between the mode growth rate and the center energetic particle 
pressure

The damping effect from kinetic core thermal ions is observed



The damping of TAEs

• Thermal ion Landau damping (very small)
• Trapped electron collisional damping (neglected by fluid electron 

approximation)
• Radiative damping due to coupling to the kinetic Alfvén waves

r/a

n=2

m=2

m=3

m=1

m=4

Mode structure with MHD operator Mode structure with gyrokinetic operator



Damping rate increases with thermal ion larmor radius

Radiative damping
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∫

Analytical calculation of the thermal ion 
radiative damping (Fu. et al., Phys. 
Plasmas, 1996 )




