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Introduction: NIMROD’s ‘implicit leapfrog’ algorithm is
tailored for coefficients of high-order spatial expansions.
• A plane (poloidal) of 2D spectral elements and finite Fourier series in the
periodic coordinate (toroidal angle) allow spectral convergence.
• Implicit advances require solution of large algebraic systems at each step.

• With symmetric geometry and equilibria, linear computations solve a
separate linear system for each Fourier component, like separate 2D
computations.
• Matrices for nonlinear 3D computations have matrix elements that
couple different Fourier components.  They are smaller than the matrix
elements for the poloidal-plane coupling by at least one factor of the
perturbation amplitude.
• Our use of FFTs to compute Fourier-component couplings scales well
in production calculations, but algebraic representation of the complete
‘3D’ matrix is not practical.

• Krylov-space solvers iterate with matrix-vector product operations but not
elements of the matrix.  Approximate matrices are used to ‘precondition.’



Hall-MHD in 3D has been problematic because fluctuations do
not contribute to the diagonal of the B-advance operator, and the
whistler is the fastest mode of the system.

• With A being a test function and dropping surface terms,
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• When the test and trial functions are expanded, the resulting matrix has
mixed partials on the diagonal due to the cross product.
• With a Fourier expansion, the first-order toroidal derivatives lead to
imaginary terms on the diagonal.

• The operator is non-Hermitian.
• It detracts from diagonal dominance when            and Δt are
sufficiently large.
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Aside: implicit electron inertia, even at physical me/mi
ratios, helps matrix condition numbers.
• The HPD part of our system is increased by adding the                   part
of electron inertia.
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for the lhs of the B-advance, also showing the divergence cleaning
term.  The electron skin depth is de=c/ωe.

• Physically, electron inertia leads to the electron cyclotron resonance, which
keeps the R-mode phase speed from growing indefinitely as kmax increases
with spatial resolution.
• This helps limit stiffness, hence condition numbers, in two-fluid
computations.



Preconditioning Strategies

• This approach works well for semi-implicit MHD with predictor/corrector
advection where matrices are HPD [JCP 195, 355 (2004)] and for semi-implicit
MHD with implicit advection and/or gyroviscosity, where the non-Hermitian
part is small.

NIMROD’s standard strategy is to use only the large matrix elements
that couple coefficients of the same Fourier index.

Three new (for NIMROD) strategies for substantially non-HPD matrices
have been tested this past year.  Two have been discarded:

1. Polynomial approximation can reduce GMRES iteration in the two-fluid B-
advance, but its iteration is just as costly.

2. Evaluating 2D poloidal ‘slices’ at a set of uniformly spaced toroidal angles
was intended to complement the standard Fourier-based scheme.

• Stand-alone ‘slicing’ is effective for sufficiently small Δt.
• At Δt of interest for production simulations, lack of diagonal dominance on
the toroidal grid prevents convergence, even when used as a multiplicative
step with the standard Fourier-based scheme.



3) An approach based on limited off-diagonal Fourier
coupling has advantages over the other two strategies.
• For block Gauss-Seidel preconditioning, the Fourier representation helps
keep the spectral radius of                     less than 1 at large time-step,
unlike the slicing strategy.  [Here, the notation refers to block-based
splitting A=L+D+U.]
• With limited couplings, matrix elements can be generated, and matrix-
vector products are fast relative to full matrix-free product operations.

• The required coding for these matrices is a generalization of existing
code for the diagonal-in-Fourier systems.
• When used in iteration, these matrices are not factored.

• Generating matrix elements is computationally intensive but scales well
in parallel. [Generation of full convolution matrices is not practical,
however, even in parallel.]
• The extra communication during Jacobi/Gauss-Seidel iteration
(preconditioner looping) is point-to-point.
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The limited Fourier coupling helps avoid increasing GMRES
iteration as toroidal resolution is increased.
• The test case here is a small two-fluid 1/1 cylindrical kink.  [The physics is
helically symmetric, but NIMROD treats it as a 3D computation.]
• Here, the representation is 9×9 biquintic, and                    .
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Serial CPU time is shown per Fourier comp.
Data at NFour=11 is from Bassi unlike others.

G-S passes makes the iteration nearly
independent of the number of Fourier
comps (NFour) in this case.

• The near-constant iteration count with increasing NFour is important.
• This case is dominated by n=1; others may be more challenging.



Parallel Scaling
Improving resolution requires increasing use of parallelism that is
available in new multi-core massively parallel computers.
• The new preconditioner has been developed to provide good scaling with
NIMROD’s two types of domain decomposition (poloidal blocks and Fourier layers).
• Application is a two-fluid kink in the
early nonlinear stage; Δt = 0.1 τA.
• Results are from the Cray XT4 at
NERSC (“Franklin”), quad-core.
• Parameters provide a weak scaling of a
production computation.
• New preconditioner help keep GMRES
iterations fixed with increasing NFour.
• Largest computation has 1.8×108

degrees of freedom (coefficients of the
high-order representation) and exceeds
the 1-TFlop level of actual performance.

Blue: 32 blocks; Black: 64 blocks; Red: 128
blocks.  Within color shows increasing NFour.



Memory may be the limiting factor in this scaling.
• Results include recent efficiency improvements that reduce latency in
the communication operations before and after FFTs.
• The two types of decomposition are algorithmically independent.
• Both 64- and 128-block sets are scaled to 86 Fourier components with 2
components per layer.

Computational performance and
memory use in scaling study.

• Computations with 128 blocks
approach maximum average
available memory per core.
• Improvements in new release of
SuperLU_DIST may help.
• LBL group (X. Li) is developing
an ILU version of SuperLU_DIST,
which may be more efficient for
preconditioning.



Internal Kink Application

• Cylindrical results (see poster BP6.00042) can be benchmarked
against others.

• Germaschewski will present the same type of fast
reconnection behavior from a full model in presentation
GI1.00004.

• Toroidal results summarized here may be new.

Application of NIMROD to the nonlinear two-fluid internal-
kink is both a nonlinear benchmark and a research study.



Simulations of the internal kink in toroidal geometry
investigate inherently three-dimensional evolution.

• Equilibria are generated with the new
NIMEQ code:  E. Howell, BP6.00041.
• Profiles for the circular cross-section,
R/a=4 torus are specified as P=const
(β=5×10-3) and
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where ψ is the normalized ring flux.

• Here q(0)=0.97, q(a)=1.61.
• Other parameters are:
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Mesh of spectral elements reflects
slight Shafranov shift and is
packed near 1/1 resonance.



Moderate and high resolution computations obtain a
nonlinearly increasing kinetic energy growth-rate.

• First case has a 20×20 mesh, degree of polynomials is 8, and 0≤n≤42.
• Second case has a 24×32 mesh, degree of polynomials is 8, and 0≤n≤85.
• The moderate and large computations were run on 300 and 1376 cores of
“Franklin” in quad-core configuration.



The computations show a transition from current-sheet to
x-point reconnection when the growth-rate of kinetic
energy increases.

Just before the increase in growth rate
(t t=4.67×10-3 τr), there is a broad layer
of parallel current density (grayscale)
where field-lines are reconnecting.

Near the peak growth rate (t t=4.95×10-3

τr), x-point reconnection is evident, and
parallel current is concentrated.

• While the toroidal cases are inherently 3D, initial R/a=4 results
are qualitatively similar to helically symmetric cylindrical results.



Conclusions
• Improvements to NIMROD’s computational linear algebra are
proving essential for studying two-fluid macroscopic dynamics in 3D.
• The implicit Hall term is non-Hermitian, but its impact on diagonal
dominance is minimized by NIMROD’s Fourier representation.
• Implicit electron inertia is a HPD operator and limits numerical
stiffness from the R-mode, even with realistic me/mi.
• Incorporating limited Fourier coupling is proving reasonably
effective and scalable in production two-fluid computations.
• The algorithmic improvements are being used successfully in a two-
fluid study of internal kink.

• Also RFP tearing--see J. King, poster NP6.00071.
• Toroidal geometry computations are inherently 3D, but initial two-
fluid results are qualitatively similar to the cylindrical results.
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