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0}\ ELM onset and growth linked to the coupling

;i between ballooning and kink modes

* “|deal-like”/ “Halo” defined in NIMROD

e ELITE benchmarks with NIMROD

* Single Linear case examined as precursor to NL studies

* Technique developed to isolate ballooning and kink drives
* Preliminary nonlinear results guide future analysis

e Summary




Detailed “ideal” study in NIMROD

Halo
NIMROD

ideal-like
NIMROD

define ideal and halo in NIMROD with

the intent of using the halo placement
to “dial in” kink/ballooning drive
|) kink: halo region
just outside pedestal

2) ballooning: halo region
far from pedestal




Halo region defined with an imposed

resistivity and density transition

* N transitions from low, “ideal” to a large value at a specified PHaio
+ Tanh function used as an N multiplier

* Density decreased by a factor of 100, transitions at a specified Pdens
+ Tanh function also used, sharp transition not possible
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Quantifying “ldeal” in NIMROD
requires high spatial resolution

e Start with purely ideal case

+ S = o everywhere
no halo region

n=12 mode
V, eigenfunction

:,.‘,4,.,4..,,,gvmc_”>ﬁﬁ”‘pytétjoh‘al
grid points packed

+ linear ideal MHD, n = 12
+ no dissipation in system
+ Kyisc, I(perp =0




Lundquist scans define critical,

“ideal-like” value in NIMROD

* systematically decreased S from oo
e critical value defined, below which plasma behaves ideally
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Beyond a critical halo-resistivity

the modes are not affected

* Define Scrit-Halo : increase vacuum resistivity until no effect is produced
+ Lundquist ratio not a good characterization parameter
+ Introduction of halo region doesn’t affect Scrit-ideal
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Ballooning unstable equilibrium

generated for ELITE benchmarklng

e TOQ-generated series of equilibria
scanning across stability boundary

* shape = simple circle
» pedestal is wide
* interface at Psin ~0.7 (P’ and J;; = 0.0)

 plasma vacuum interface has O pressure
and current

o ELITE growth rates weakly sensitive to
vacuum location




Results show excellent spectral

agreement with ELITE

* Equilibrium generated to have little variation with vacuum placement
* results without halo region show o5 cbrm8_dens8 cutoff soan (ELITE)
little variation at high-n
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<104 3.0

n = 8 mode structure in =

NIMROD and ELITE s

0.5

® YTaeume ~ 0.132

® YTanimMroDp = 0.132

e Sin=1e8, Soue=10

® Phalo = 0.82, dvac = 500
® Pdens = 0.82, npp(l) = 50
* kperp = kvisc = 0
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Nonlinear calculations of n = 10

duration = 100Ta

.' 22 modes included: n=0-21, initialized with linear n=10 mode

* nonlinear n=0 & n=20 mode growth at twice linear n=|0§rate expected

* The transition to nonlinear dynamics is expected when = ~0(1)

+ For an initial velocity perturbation Vo~1x10* this occurs after ~30Ta
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* Results show linear growth rates well into NL regime,
<+

(as expected, Ping Zhu -- see APS poster)
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e Similar equilibrium

* Lower pedestal pressure and edge current
* n > |0 converged

e n (1-10) appears to be slowly growing oscillating modes... in progress
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©6, New equilibrium allows the study of

AV

A% peeling & ballooning mode drives
-4
TOQ-generated shifted-circle ’

tokamak equilibrium
~S. Kruger & P.Snyder s

—— Equilibrium Flux Surfaces ——

Ro = 3m,a=Im _
B, = 2T =0
Bto = .005

n = 1.06x102°(m-3) 1

- no density transition

* Modified TOQ o 1

[ Pressure
. AU

R(m)

+ currents in edge set to 0

+ minimizes numerical
errors (no separatrix)

+ pedestal region

+ ~67-75cm on midplane




Equilibrium profiles show peeling-

ballooning instability drive source

0.005 .

e Steep pressure gradients W Bt
drive ballooning modes 00041 ]
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Halo location relative to the q rational

surfaces affects instability drives

e using q profile
identify mode
rational surfaces 5 6

11/4 surface
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e adjusting the halo location
“dials in” kink, ballooning, &

—1t peeling-ballooning behavior
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Low-n modes are sensitive to

location of halo transition
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Kink & ballooning drives are adjusted

within a single equilibrium

* Developed a technique where relative rates of ballooning / kink drive
are changed by adjusting the location of the halo region relative to
the plasma pedestal region

- actual NIMROD calculations
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Summary

e Currently developing/documenting detailed linear peeling-ballooning
analysis in NIMROD

+ Defined critical Lundquist values for defining an “ideal-like” plasma and
halo region in NIMROD
- (Scrit-ideal ~ 5 *107; Scrit-halo ~ 0.5)
Ratio of these values are greater than in experiment

+ Demonstrated a technique that varies the linear spectral properties of a
single equilibrium
scans show extreme spectral sensitivity to halo location
* convergence in this region is quite challenging
*(especially when PHalo ~ Pgmn)
edge ballooning & kink effects can be “dialed in” by using a sharp resistivity
transition region located at relevant flux positions

* Preliminary NL results show qualitatively needed resolution and
expected energy growth rates for a single NL filament growth




Eigenfunctions have peeling-ballooning
structure

e n=|2 Halo-free mode structure, ballooning

* n=3 pvac=0.751 mode structure, peeling-ballooning

n=12 mode

n=3 mode /=) 0 : .
, (o 0t Vi eigenfunction
Vi eigenfunction ' [|Y))) ) | 9

| no halo




Preliminary NL runs in NIMROD

* In addition to the linear, began preliminary NL calculations in
NIMROD

* Purely a demonstration of technique
+ not ideal Scric: Sin ~ 5%10°
*+ not resistivity independent halo: Noye ~ 1072 (Q2*m)
- Sout ~ 5%10?
*+ Pvac = 0.84
+ calculation grid points not packed

e Used to:
+ guide future studies

+ use results to design analysis tools
- develop method to estimate transition between NL stages
- determine growth regime to compare with analytic studies
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| Increasing S (constant) increases problem
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e For S = 10° the sawtoothing is seen up to n = 3 mode
* Not entirely sure if it is the exact same behavior
* Ping and Chris believe this is converged growth, | am not sure
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O, . .
l/'( ‘. Low-n modes have oscillatory behavior

e Strange “saw-tooth-like” growth m/\/\/W\
+ occurs in low-n (stable?) modes =
+ may be real physics ;In
- two modes (resistive & ideal) may =
simultaneously exist ||
- Scott also saw this sawtoothing | .
- perhaps nimrod bounces between oL Ma,gnetl,c En,ergy.vs' t.
two solutions R . 10 . 20 5,
: : 2r t N
+ Moving the vacuum region out /\/\/\ N/\/\ /\
seems to eliminate the issue... ol
S w Y Y Y Y U Y
- without a vacuum modes don’t =
grow Lul"of
+ Modes appear to be rotating/ _
oscillating? -
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Linear n=9 eigenmode used to

excite NL growth

. * nonlinear beating expected to
* 22 modes included: n=0-21 ~ g_ P
o o produce n=0 & n=18 mode growth
* initialized with linear n=9 2t twice linear n=9 rate
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Lundquist/Resistivity ratio is not a
good characterization parameter

Note: the two criteria, Sin and Sout,
0.02 must be simultaneously and separately Pped=0.75

satisfied Pvac=0.84
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