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Theses:

1) Key next step for extended MHD computational models is to add multi-

collisionality viscous forces that yield bootstrap current and poloidal flow.

2) A new approximate form for ~∇·↔π‖ that accomplishes this has been

proposed — in UW-CPTC 09-6, available via http://www.cptc.wisc.edu.

3) Longer term we need a more exact kinetic-MHD hybrid model that

obtains bootstrap current in neoclassical ‖ Ohm’s law & poloidal ion flow.

Outline:

Parallel viscous stress closure needed for bootstrap current, poloidal flow

New multi-collisionality parallel stress closure

What’s needed in long term
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Electron Parallel Force Balance Yields ‖ Ohm’s Law

• For times t > 1/νe ∼ 10µs, equilibrium electron ‖ force balance becomes

0 = −nee〈 ~B·~E
A
〉−〈 ~B·~∇·↔πe〉+ 〈 ~B·~Re〉+ 〈 ~B·~Sem〉−mene0〈 ~B· ~̃Ve·~∇ ~̃Ve 〉−ne0e〈 ~B· ~̃Ve× ~̃B⊥〉.

• Using the collisional friction relation ~B0· ~̄Re = − ~̄B0·~Ri ' ne0 e ~B0· ~J/σ‖
and neoclassical closure 〈 ~B0·~∇·

↔̄
πe‖〉 ' mene0〈B2

0〉(µe00Ueθ + µe01Qeθ), this

equation yields an extended neoclassical-based parallel Ohm’s law:1

〈 ~B0 · ~̄EA〉︸ ︷︷ ︸
ĒA
‖ field

= ηnc
‖ 〈 ~B0· ~J〉︸ ︷︷ ︸
‖ current

−
1

σ‖
[ 〈 ~B0· ~Jbs〉︸ ︷︷ ︸
bootstrap

+ 〈 ~B0· ~JCD〉︸ ︷︷ ︸
current drive

+ 〈 ~B0· ~Jdyn〉︸ ︷︷ ︸
dynamo

], ηnc
‖ '

1

σ‖

(
1 +

σ‖

σ⊥

µe00

νe

)
.

• ‖ currents are driven by dP0/dψp, ‖ e momentum sources and fluctuations:

〈 ~B0 · ~Jbs〉 ' −
σ‖

σ⊥

µe00

νe

(
I
dP0

dψp
− ne0eUiθ〈B2

0〉
)

, bootstrap current,

〈 ~B0 · ~JCD〉 ≡ −
σ‖

ne0e
〈 ~B0 ·

(
~̄Sem −me

~̄VeS̄en

)
〉, non-inductive current drive,

〈 ~B0 · ~Jdyn〉 =
σ‖

ne0e
〈 ~B0 ·

(
mene0 ~̃Ve·~∇ ~̃Ve + ~∇·↔πe∧

)
〉︸ ︷︷ ︸

‖ Reynolds stress

+ σ‖ 〈 ~B0 · ~̃Ve× ~̃B⊥ 〉︸ ︷︷ ︸
‖ Maxwell stress

, dynamo.

1For illustrative purposes the equations here are simplified versions where the effects of the poloidal electron heat flow Qeθ have been neglected.
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Poloidal Flow Is Obtained From Plasma ‖ Force Balance

• Summing the parallel force balances over species yields (for S̄n = 0)

mini0
∂〈B0Vi‖〉

∂t
' −〈 ~B0·~∇·

↔̄
πi〉 −min0〈 ~B0 · ~̃Vi ·~∇ ~̃Vi 〉+ 〈 ~B0 · ~̃J∧× ~̃B⊥〉+ 〈 ~B0 ·

∑
s
~̄Ssm〉.

• The poloidal flow is determined mainly by the parallel ion viscous force:

〈 ~B·~∇·↔πi‖〉 ' mini0

[
µi00Uiθ + µi01

−2

5niTi
Qiθ + · · ·

]
〈B2〉, µi00, µi01 ∼

√
ε νi.

• For t > 1/νi ∼ 1 ms, poloidal flow from NCLASS, or 〈 ~B·~∇·↔πi‖〉 ' 0 is:

U0
iθ(ψp) ≡

~V ·~∇θ
~B·~∇θ

' −
µi01

µi00

−2

5niTi
Qiθ '

cp I

qi〈B2〉
dTi0

dψp
=⇒ Vp '

1.17

qiB

dTi0

dr
+O{δ2}.

• Including all the drives in the parallel plasma force balance above yields

Uiθ(ψp) ' U0
iθ(ψp)︸ ︷︷ ︸

neoclassical

−
〈 ~B0 · (mini0 ~̃Vi ·~∇ ~̃Vi + ~∇·↔πi∧) 〉

mini0µi00〈B2
0〉︸ ︷︷ ︸

‖ Reynolds stress

+
〈 ~B0 · ~̃J∧× ~̃B⊥〉+ 〈 ~B0 ·

∑
s
~̄Ssm〉

mini0µi00〈B2
0〉︸ ︷︷ ︸

‖ Maxwell stress + flow sources

.

• Given the poloidal flow (Ω∗p ≡ I Uiθ/R2), relation of toroidal flow to Er is:

Ωt ≡ ~V ·~∇ζ = −
(
dΦ

dψp
+

1

niqi

dpi

dψp

)
+ Ω∗p =⇒ Vt '

Er

Bp

−
1

niqiBp

dpi

dr
+

1.17

qiBp

dTi

dr
.
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How Can We Add These ‖ Flow Damping Effects To Codes?

• Braginskii viscous force due to CGL form for parallel stresses is

↔
π‖ ≡ π‖

 ~B ~B

B2
−
↔
I

3

, π‖ ≡ −
3

2
η0

~B ·
↔
W · ~B
B2

,
↔
W ≡ ~∇~V + (~∇~V )T −

2

3

↔
I (~∇·~V ).

• Parallel component of parallel rate of strain has a couple of forms:

~B ·
↔
W · ~B/2 = B( ~B ·~∇)(~V· ~B/B) + [ ~B×( ~B×~V )] ·~κ− (B2/3)~∇·~V

= B2~V ·~∇ lnB + ~B ·~∇×(~V× ~B) + (2B2/3)~∇·~V − ( ~B·~V )(~∇· ~B).

• For ~∇· ~B = 0, ~∇·~V = 0 and ~V⊥ = (1/B2) ~B×~∇f , the last form yields

π‖ = − 3η0 (~V ·~∇ lnB)+∆π‖, where ∆π‖ ≡ − (3η0/B
3)( ~B·~∇f)[ ~B·~∇×( ~B/B)] is small.

• Viscous force for the Braginskii viscous stress is (~κ is curvature vector)

~∇·↔π‖ = π‖ [~κ− ~B( ~B ·~∇ lnB)/B2] + (1/B2) ~B( ~B ·~∇)π‖ − (1/3)~∇π‖

=⇒ ~B0 ·~∇·
↔
π‖ = −π‖ ( ~B0 ·~∇ lnB0) + (2/3)( ~B0 ·~∇)π‖.

• FSA neglecting ∆π‖ & using ~V ·~∇ lnB0 = ( ~B0 ·~∇ lnB0)Uθ(ψp) yields

〈 ~B0 ·~∇·
↔
π‖〉 = 3η0 〈( ~B0 ·~∇ lnB0)

2〉Uθ, with Uθ(ψ) ≡
~V ·~∇θ
~B0 ·~∇θ

from ~∇·~V = 0.
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Adding Parallel Flow Damping Effects To Codes (continued)

• A multi-collisionality parallel stress that yields the Braginskii and flux-

surface-averaged neoclassical closures has been proposed2 (b̂ ≡ ~B0/B0):

π‖ = − mnµ 〈B2
0〉

b̂ · ~∇B0

〈 (b̂ · ~∇B0)2〉
(
Uθ − U0

θ

)
− 3 η0

(
~B ·~∇×(~V× ~B)

B2
+

2

3
~∇·~V −

( ~B ·~V )(~∇· ~B)

B2

)
.

• Electron neoclassical poloidal flow damping frequency µ is of the form

µe '
2.3
√
ε νe

(1 + ν
1/2
∗e + ν∗e)(1 + ε3/2ν∗e)

, for collisionality parameter ν∗e ≡
νe

ε3/2ωte
=

Rq

ε3/2λe

=⇒ banana regime for ν∗e � 1, plateau for 1� ν∗e � ε−3/2, Braginskii for ν∗e � ε−3/2.

• The “offset” poloidal flow velocity for electrons or ions is given by

U0
sθ(ψp) ≡ ks

I(ψp)

qs〈B2
0〉
dTs0

dψp
, in which ks has a form similar to µe.

2J.D. Callen, “Viscous Forces Due To Collisional Parallel Stress For Extended MHD Codes,” UW-CPTC 09-6 (via http://www.cptc.wisc.edu).
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Caveats And Long Term Needs

• PROPOSAL: Implement Braginskii operator with neoclassical viscous damp-

ing frequencies µe, µi and flow offsets Ueθ, Uiθ in M3D and NIMROD3?

Some issues for such a proposition:

Best form of π‖ to use? ~V e → − ~J/nee ∼ ∇2 ~B yields 4th order operator in ∂ ~B/∂t eqn.

Poloidal variation of viscous force for ν∗ � 1 not properly captured — but do we care?

Long parallel scale variations should still be relaxed with Braginskii coefficient η0?

Need heat flow offsets (U0
θ ) to damp flows to nonzero values.

Need Zeff effects on µ for realistic tokamak plasma situations.

• Ultimate test of procedure is via more fundamental kinetic-based approach

that solves drift-kinetic equation and uses result to obtain π‖ closure:

Held — finite element continuum solution of drift-kinetic equation,

Ramos — ordered, closed fluid and electron formulation for slow-MHD.

• Challenge for kinetic-based approaches before it would be appropriate to

implement them in M3D and NIMROD would be demonstration that they

can obtain the axisymmetric neoclassical parallel Ohm’s law including the

bootstrap current and the neoclassical poloidal ion flow damping.

3C.R. Sovinec, www.cptc.wisc.edu/sovinec research/notes/e viscosity2.pdf; C.R. Sovinec et al., 2007 Sherwood Conf., Annapolis, MD.
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