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What’s New in M3D-C1 

•  Non-axisymmetric linear equations 
–  Gyrovisc., parallel visc., parallel kappa 

•  Ability to read in EFIT, GATO, TOQ, etc. 
•  Semi-implicit Hall operator 
•  New method for specifying boundary 

conditions 
•  Non-axisymmetric external currents 
•  Capability for discontinuous resistivity 
•  New physics/benchmarking results  

–  See posters TP8.22 and UP8.97 on Thursday 



Two Fluid “Noodling” Instability 

•  Hall term leads to noodling instability at low  
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Two-Fluid “Noodling” Instability 

•  One solution is Arakawa differencing 
(symmetrize differencing operator)1 

•  Another solution is Harned-Mikic dispersion2 

•  We have implemented “Hall” operator: 
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L∝−(B ⋅ ∇)2∇2
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1−θ 2δt 2L( )Bn+1 = 1−θ 2δt 2L( )Bn −δt J ×B
ne

1Salmon and Talley, JCP 83:247 (1988) 
2Harned and Mikic, JCP 83:1 (1989) 
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L(B) =∇ × ∇ ×∇ × (J ×B)[ ] ×B + J × ∇ × (J ×B)[ ]{ }

not yet implemented 



Two-Fluid “Noodling” Instability 

•  Derivation follows “parabolization” method 
•  Taylor expand 
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˙ B = −∇ × (J ×B)
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˙ B = −∇ × (J ×B) −θδt∇ × ˙ J ×B + J × ˙ B [ ]
= −∇ × (J ×B) −θδt∇ × (∇ × ˙ B ) ×B + J × ˙ B [ ]
= −∇ × (J ×B) + θδt L(B)
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L(B) =∇ × ∇ ×∇ × (J ×B)[ ] ×B + J × ∇ × (J ×B)[ ]{ }



Boundary Conditions with C1 Elements 

•  Boundary conditions are of the form 

•  Reduced quintic basis obeys: 

•  Want trial functions obeying 
–      is maximally coupled with BC equation 
–  This implies                          where 

•  Therefore, before applying BC’s, do 

•  For  curved boundaries  
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L' x = X'
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L'= 1 ∂n ∂t ∂n∂n ∂t∂n ∂t∂t( )T
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L = 1 ∂R ∂Z ∂R∂R ∂R∂Z ∂Z∂Z( )T
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A ⋅ x = B → J−1( )
T
⋅ A ⋅ x = B[ ]
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L'= J ⋅L€ 

L ⋅ ν = I
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L'⋅µ = I
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Boundary Conditions with C1 Elements 

•  Correctly treating BCs is important 

Without transformation With transformation 



ELM Stability: Ideal Limit 

•  To approximate ideal limit, M3D-C1 uses a 
discontinuous resistivity profile 
–  In this case, resistivity is not represented on the 

finite element basis (which is C1) 
–      is calculated as a 

function of      at each 
sampling point 
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ELM Stability: CBM18 

•  Relatively low resolution requirement 
•  Good agreement with ELITE/GATO up to n=20 



ELM Stability: DBM18 

•  Effect of gyroviscosity (FLR) 
is small 



ELM Stability: Meudas1 

•  Very high resolution requirement 
near x-point 

•  Growth rate is sensitive 
•  ELITE assumes infinite vacuum 



ELM Stability: Time Step 

•  The (unsplit) Crank-Nicholson time 
discretization is more accurate 

•  The (split) semi-implicit step is faster, allows 
larger problem size 

•  Split 
convergence 
might not always 
be this bad 



Non-Axisymmetric Fields: Vacuum 

•  The vector components of B are known from 
Biot-Savart 

•  Need to translate to M3D-C1 variables 
–  Solve: 
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Least-squares solution: 

Over-determined! 



Non-Axisymmetric Fields: Vacuum 

M3D-C1 SURFMN 
Even Parity 

Dashed white line is m = nq 



Non-Axisymmetric Fields: Quasi-Ideal Response 

Even Parity Odd Parity 

Dashed white line is m = nq 
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η =10−8, µ =10−5, κ =10−4

•  Perturbation on resonant surface is suppressed 



Conclusions 

•  Semi-implicit Hall operator works well in 
axisymmetric simulations 

•  New BC method greatly improves stability 
•  M3D-C1 finds excellent agreement with ideal 

codes on ELM stability for low/intermediate n 
–  Resolution requirements are onerous at high n 
–  Effect of gyroviscosity is negligible at low n 

•  Vacuum RMP calculation agrees with Surfmn 
•  Linear RMP response shows both expected 

and unexpected features 



Future Work 

•  Comprehensive Study of Non-Ideal Effects in 
ELM Stability 
–  Resistive (Type III) 
–  Two-Fluid 
–  Non-stationary equilibrium  

•  Comparison of linear RMP response with 
experimental results 
–  Dynamical response explored in DIII-D 

experiment 

•  Nonlinear extension 


