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What's New in M3D-C!

* Non-axisymmetric linear equations
— Gyrovisc., parallel visc., parallel kappa

* Ability to read in EFIT, GATO, TOQ, etc.
 Semi-implicit Hall operator

* New method for specifying boundary
conditions

* Non-axisymmetric external currents
 Capability for discontinuous resistivity

* New physics/benchmarking results
— See posters TP8.22 and UP8.97 on Thursday
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Two Fluid “Noodling” Instability

* Hall term leads to noodling instability at low 7]
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Two-Fluid “Noodling” Instability

* One solution is Arakawa differencing
(symmetrize differencing operator)’

e Another solution is Harned-Mikic dispersion?
(1-6°6°L)B"" = (1-6°5°L)B" - bt IxB
ne
Lx—-B-V)’V’
* We have implemented “Hall” operator:
L(I_%)=Vx{[VxVx(JxB)]xB+Jx[Vx(JxB)]}
\ J

¥
1Salmon and Talley, JCP 83:247 (1988) not yet implemented

2Harned and Mikic, JCP 83:1 (1989)
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Two-Fluid “Noodling” Instability

* Derivation follows “parabolization” method
* Taylor expand B =-V x(J xB)

B=—Vx(JxB)—H§th:JxB+JxB]

=-Vx(JxB)-08:V x[(VxB)xB+JxB|
=-Vx(JxB)+ 06t L(B)

L(B)=Vx{[VxVx(JxB)]xB+Jx[Vx(JxB)]}
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Boundary Conditions with C! Elements

e Boundary conditions are of the form
L'x=X L'=(1 ¢, 0, 4,0, 94,
* Reduced quintic basis obeys:
L-v=I L=(1 9, 9, 0.0y 09, 9,0,)
* Want trial functions obeying L'-u =1
— u is maximally coupITed with BC equation
— This implies u = (J_l) 'V where L'=]J-L
* Therefore, before applying BC's, do
A-x=B — (J') -[A-x=B]_
* For curved boundaries J#(J_l])
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Boundary Conditions with C! Elements

* Correctly treating BCs is important
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ELM Stability: Ideal Limit

* To approximate ideal limit, M3D-C! uses a
discontinuous resistivity profile

— In this case, resistivity is not represented on the
finite element basis (whichis Cl)
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ELM Stability: CBM18

CBM18: u,
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* Relatively low resolution requirement
 Good agreement with ELITE/GATO up to n=20
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ELM Stability: DBM18

DBM18: u, DBM18 (I'=5/3)
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» Effect of gyroviscosity (FLR)
is small
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ELM Stability: Meudas]

Meudasl: w, Meudasl (I'=5/3)
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* Very high resolution requirement
near x-point
20 25 30 35 e Growth rate is sensitive
R (m) e ELITE assumes infinite vacuum
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ELM Stability: Time Step

* The (unsplit) Crank-Nicholson time
discretization is more accurate

* The (split) semi-implicit step is faster, allows
larger problem size
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Non-Axisymmetric Fields: Vacuum

 The vector components of B are known from

e Need to tfranslate to M3D-C! variables

Biot-Savart
— Solve:
g LW _
R dZ ORIy
B, - Loy J°f
R OR JZdp
B, =RV;

Over-determined!

e

Least-squares solution:

LT-L-(UJ)=LT-B
f
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Non-Axisymmetric Fields: Vacuum

Even Parity
M3D-C! SURFMN
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Non-Axisymmetric Fields: Quasi-ldeal Response

* Perturbation on resonant surface is suppressed
Even Parity Odd Parity
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Conclusions

 Semi-implicit Hall operator works well in
axisymmetric simulations

* New BC method greatly improves stability

* M3D-C! finds excellent agreement with ideal
codes on ELM stability for low/intermediate n

— Resolution requirements are onerous at high n
— Effect of gyroviscosity is negligible at low n
e Vacuum RMP calculation agrees with Surfmn

* Linear RMP response shows both expected
and vnexpected features
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Future Work

« Comprehensive Study of Non-ldeal Effects in
ELM Stability

— Resistive (Type lll)
— Two-Fluid
— Non-stationary equilibrium
e Comparison of linear RMP response with
experimental results

— Dynamical response explored in DIII-D
experiment

e Nonlinear extension
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