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Scalable Parallel Solver Development Strategy

» Physics-based preconditioning
*  Divide and conquer, reduces size and improves diagonal dominance of matrices to be solve.

e Similar to split time step, but wrapped inside a full nonlinear Newton-Krylov solve.
Convergence requires accurate preconditioning.

» Need scalable method for solving reduced matrices.

*  FETI-DP: proven scalability, natural preconditioner, but limited to SPD matrices. No longer
under development.

. Static condensation, GMRES, additive Schwarz: more general and robust, scales up to
moderate size.

e Algebraic multigrid: remains to be investigated.

» General framework developed and tested. Requires problem-specific Schur complement
in flux-source form.

» Sequence of increasingly complete model problems developed and tested.
* Linear ideal MHD traveling waves in 2D.
*  Nonlinear, dissipative, traveling and standing MHD waves in 2D.
e 1D cylindrical magnetic confinement, theta pinch, radial compression, nonlinear, dissipative.
. 2D, FRC, numerical initial conditions.
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Physics-Based Preconditioning
Factorization and Schur Complement

Linear System
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Exact and Approximate Inverse
Preconditioned Krylov Iteration

Inverse
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Preconditioned Krylov Iteration

P~L", (LP)(P™'u)=r

Outer iteration preserves full nonlinear accuracy.
Need approximate Schur complement S
and scalable solution procedure for L,, and S.
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Ideal MHD Waves

Linearized, Normalized Equations
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Approximate Schur Complement
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Ideal MHD Schur Complement, 1

Evaluation of T},
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Ideal MHD Schur Complement, 2

Pressure Gradient Schur Terms

Tp=—Iv-VP
Tpij = —(Sijl.'kakp

Current Schur Terms

SJEJx%sz[Vx(va)]
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Static Condensation

» Implicit time step requires linear
system solution: Lu =r.

> Direct solution time grows as n>.

» Break up large matrix into smaller
pieces: Interiors + Interface.

> Small direct solves for interior.

» Interface solve by CG or GMRES,
precoditioned with LU or ILU(k) on
each processor, with Schwarz overlap
between processors.

» Substantially reduces solution time,
condition number.

Interfacel I, Latticework Grid

Interior || | Interior|| | Interior
Interior Interior Interior
Interior || | Interior Interior

Interfage I', Latticgwork Grid
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Nonlinear, Dissipative Wave Test Problem

» Nonlinear, dissipative, standing or traveling MHD waves in a doubly periodic
uniform plane.

» 2D k vector in computational plane, 3D B vector specified by spherical angles about
normal to plane. Continuous control of angle 6 between k and B.

> Initialize to pure linear eigenvector: fast, shear, or slow wave.
» Unit cell: 1 full wavelength in each direction, nx = ny = 8, np = 6, nqty = 8.

» Weak scaling test case: each processor has one unit cell.
Nonlinear amplitude delta, resistivity, viscosity, thermal conductivity to damp
nonlinear coupling to high frequency, short-wavelength modes.

»> 1 — 192 processors on PSI Center Ice cluster.
» Largest test problem size:
* 128x96 unit cells, 192 processors. 2-6 minutes of wall time.

» 3.8M dependent variables, 64 large time steps. For large delta, multiple Jacobian
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Wall Time to Solution, Schur Solve
Nonlinear, Dissipative MHD Slow Traveling Wave
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Wall Time to Solution
Comparison to Direct Solvers
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Comments on
Nonlinear, Dissipative Wave Test Problem

Erratic scaling up to 16 processors, then smoothly scales up to 192.

Increasing nonlinear wave amplitude requires substantial increase in
effort due to larger number of Jacobian evaluations, but no degradation
in scaling.

Deviation from perfect scaling: (wall time) = (nproc) ¥
Perfect: y = 0. Actual: y=0.13. Disclaimer: limited to nproc = 192.

Memory requirement primarily due to computed and stored sparse
matrix, very small, scales up linearly, requires much less than available.

Capable of treating entire 3D problem.

Direct solvers: SuperLU and MUMPS, condensed matrix, worse time
scaling, run out of memory. Only capable of preconditioning 3D solve.
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1D Magnetic Confinement Model, Theta Pinch
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Time dependence due to resistive decay of magnetic field
or radial compression.
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1D Magnetic Confinement Model, Theta Pinch

Magnetic Flux Axial Magnetic Field
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1D Magnetic Confinement
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Comments on
1D Magnetic Confinement Test

» Deviation from perfect scaling: (wall time) = (nproc)
Perfect: y = 0. Actual: y=0.57. Much worse than 2D wave test.

» Cause of poor scaling: increasing condition number of Schur complement,
GMRES iterations. Not scalable.

» Why does this show up for this test but not for 2D wave tests?
* 1D initial conditions, 1D scaling of grid, only ny scales up, by factor of 64.
* 2D initial conditions, 2D scaling of grid, nx and ny scale up by factors of 16 and 12.

*  Condition number of Schur complement scales as wy,” = (k+k?)*(w/ +wg’).
Gets much larger in 1D scaling test.

*  Slow time scale also scales up in wave test, but not in 1D confinement test.
1D case not of practical interest, 2D and 3D cases scale up to reasonable values.

FETI-DP scalable but only for SPD matrices. GMRES not scalable. Geometric
multigrid scalable but not applicable to spectral elements. Algebraic multigrid 2w,
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Additional Tests and Future Plans

» 2D numerical initial conditions, FRC, Grad-Shafranov solution,
George Marklin. Schur complement solution procedure works
correctly, but with excessive Newton iterations, indicating inaccurate
Schur complement, not large condition number. Not yet diagnosed.

» Algebraic multigrid will be investigated for improved scalability in
cases where condition number is an issue.
BoomerAMG, Hypre, PETSc.

» 3D: HiFi and other codes. Since physics-based preconditioning
involves physical rather than geometric decomposition, and doesn’t
require large memory, extension to 3D should be straightforward.
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