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Outline: 3 Topics
• Differential approximation

– Key findings von Neumann analysis (review)
– Applying DA to implicit leapfrog
– Insights from DA

• Benchmarking of NIMROD with ELITE
– Quick review of study
– ‘Final’ ballooning-unstable comparisons

• Parallel scaling
– Algorithm improvements (from last year)
– Recent results

• Conclusions



Differential Approximation→Background
Analyzing modes of the time-step operation (von Neumann)
was critical in the development of NIMROD’s implicit leapfrog
algorithm for two-fluid models (SciDAC ‘05).
• The analysis includes Hall, gyroviscosity, electron inertia,
separate COM and electron flows, and resistivity.
• Thermal response is adiabatic with electron pressure being a
fixed fraction of the total pressure.
• Spatially, the linear response is assumed to vary as exp(iky).

• Spatial discretization effects are not considered.
• λ is the eigenvalue of the time-step operation.

• Modes satisfy:
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Results of the von Neumann analysis establish the
stability of the implicit leapfrog.

• The time-step matrix is found from products of matrices for explicit
terms and inverses of matrices for implicit terms.

• Analytical relations for the eigenvalues can be found for limiting cases.

• Results for general cases are evaluated numerically with LAPACK
routines that can handle matrices with geometric multiplicity < algebraic
multiplicity.

• Key findings (presented at APS 2005 & Sherwood 2006) are:
• The implicit leapfrog is numerically stable with the Hall and GV terms
centered in the B- and V- advances, respectively.
• Predictor/corrector advection leads to severe time-step restrictions
with the implicit Hall advance.
• Implicit advection is numerically stable if V⋅∇ terms are centered in
each advance.
• Dissipation is numerically stable for centered or backward
differencing.



Numerical evaluation produces eigenvectors that
can be used to initialize NIMROD tests.

• The equations are normalized such that time is in units of 1/Ωi and
length is in units of di.
• Eigenvectors reflect the algorithm’s temporal staggering, which is critical
for launching a single sine-wave at finite Δt-values.

Case with nearly parallel propagation
has β=0.15, V0=0.2, and Δt=0.5.

Case with nearly perp. propagation has
β=0.6, V0=0.2, and Δt=1.5.

• The agreement (including GV effects) contributes to code verification.



Numerical evaluation is also used to compare accuracy
with the Crank-Nicolson method.

Comparison for nearly parallel
propagation has β=0.15, V0=0.2, and Δt=1.

Comparison with nearly perp.
propagation has β=0.6, V0=0.2, and Δt=4.

• As reported previously, the accuracy of the implicit leapfrog is comparable to
that of Crank-Nicolson for most plane-wave responses.
• The semi-implicit operator in the implicit leapfrog suppresses effects of the
ion cyclotron resonance for the low-frequency parallel mode when kΔt~1.

• This error from splitting (Knoll, JCP 185, ‘03) seems tolerable.



Differential approximation (Shokin, Springer-Verlag ‘83) helps
explain the cause of numerical instabilities with poor
selection of parameters.
• It also provides insight and increases confidence that the von
Neumann findings are representative.
• We have used it to consider

• The centering of resistive dissipation
• Compatibility of implicit advection with the staggered
leapfrog
• The influence of the semi-implicit operator with centered
advection
• Compatibility of the semi-implicit velocity advance with
implicit Hall in the magnetic-field advance.

• In general, differential approximation provides only
necessary conditions for numerical stability.



Our approach follows Caramana (JCP 96, ‘91), but we
address the temporal staggering directly.

• Time is normalized by 1/Ωi; length is normalized by di; vA→1.
• For perpendicular propagation at low-k and β→0, the algorithm is
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where v is the y-component, and b is parallel to B0.

• We expand v about half-integer levels and b about integer levels and
drop terms that would require additional initial conditions (Caramana).
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• Last terms on the right include terms that account for synchronization.



Manipulation of the differential approximation shows the
need for centered advection.
• Change to sum and difference variables, and substitute
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v = (Z+ + Z" )/2

! 

b = (Z+ " Z" )/2

• To order Δt1, the system can be written as
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• Analytically (order Δt0), the two waves propagate independently and in
opposite directions in a frame moving with the flow.
• Considering the 3rd term on the rhs, for V0<1, one of the two numerical
responses dissipates and the other is ill-posed when                 .

• This explains why backward (& forward) differencing is not stable.
• Stability with backward differencing for V0>1 has been confirmed
with von Neumann computations.

• More truncation errors are eliminated with θv=θb.  Other contributions to
the last term are from synchronization (not O(Δt) errors).
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Differential approximation also shows the compatibility of
centered advection and the semi-implicit advance.
• The equations can be manipulated into a second-order wave equation.
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• For C0≥1/4, the operator acting on the highest temporal derivative is a
positive differential operator in the sense that
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with homogeneous boundary conditions.
• This is related to the effective k-dependent inertia described by Schnack
(JCP 70, ‘87) and by Caramana.
• For infinite or periodic systems, where Fourier rep. is appropriate,
solutions of the characteristic equation are real for C0≥1/4 for all Δt-values.
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Compatibility of centered Hall and the semi-implicit
advance follows from similar reasoning.
• Here, we consider parallel propagation at arbitrary k with V0=0 and β→0.
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• The v and b vectors have x- and z-components.
• After expanding we arrive at
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• With C0≥1/4 and additional homogenous bcs, the spatial operator acting
on the highest temporal derivative is a positive differential operator.
• Electron inertia contributes to this property but is not essential.
• With Fourier expansion, all solutions of the characteristic equation for ωk

2

are real and positive when C0≥1/4, i.e. stable propagation without
numerical dissipation.



Benchmarking of NIMROD with ELITE

Refresher: Two ballooning
unstable equilibria with a zero-
current outer layer were
generated with TOQ to avoid
mapping errors that plague
benchmarking efforts with
direct-solver equilibria.

• Scans of linear computations determined the Sin-value needed for an ideal
mode response (>108) for representative toroidal harmonics.

• Other scans checked for the maximum Sout and the maximum ρhalo needed
to obtain a vacuum-like response (<103 and <ρin/100 for these cases).



Final results with halo modeling are in quantitative
agreement (to the margin between GATO and ELITE).

ELITE and GATO results are available
for the more unstable, dens8 case.

Only ELITE results are available for the
less unstable, dens6 case.

• Even with high-resolution TOQ equilibria, re-solving the equilibrium on
NIMROD’s mesh with NIMEQ vs. interpolation with FLUXGRID makes a
quantitative difference in the linear results.
• GATO interpolates to low-order elements; ELITE uses local expansions
about each rational surface.
• Halo computations with discontinuous η-profiles work well with element
borders aligned with the discontinuity.



Marginal ideal conditions are nontrivial for NIMROD.
• NIMROD’s finite element basis functions are continuous, as needed for a
conforming representation with a dissipative system.
• The algorithm may converge from the unstable side.
• The mesh for these ballooning-mode computations is concentrated near
the pressure gradient.

• Reliable convergence needs packing over all rational surfaces for a
given ballooning mode.
• Regions left with very coarse resolution can generate growing noise.

• n=9 dens6 computation needs dissipation with a packed 60×64 mesh and
polynomials of degree 7 and is resistive at S=5.4×108; γτA=4.8×10-3.



Parallel Scaling to 10,000 Cores
Changes made to NIMROD last year lead to the improved scaling.

• Limited Fourier coupling in the preconditioner for the implicit two-
fluid B-advance avoids growth of GMRES iteration with increasing
toroidal resolution.  (figure below)
• Data and loop reordering reduce the number of collective
communication calls and increase the data transferred by each call.

Average number of GMRES iterations
for the two-fluid magnetic-field advance
at a 2-norm tolerance of 10-9 for the test
computations.  Red trace goes from 22
to 342 Fourier components.



Weak scaling on Franklin shows practical parallel
performance to 14,592 processor cores.

• The test is from a 3D cylindrical two-fluid internal kink computation during
the nonlinear phase prior to the first crash.

• S=106, ρs=0.015a, di=0.22a, de=0.005a
• Tests performed this year do not use
the performance monitor IPM.
• Different traces on the figure show 32,
64, and 128 blocks of 16 elements each
(polynomials of degree 8).
• The trace with red symbols uses 2
cores per node due to memory
limitations with 4 cores per node.
• That trace extends from 22 to 342
Fourier components (8 to 114 ‘layers’).

• Jumps between traces reflect operation count and communication with the
parallel sparse-direct solver, SuperLU_DIST.
• Tests with Xiaoye Li’s new ILU option (serial so far) are encouraging.
• Tech-X is also investigating multi-grid as an alternative.





Conclusions
• Differential approximation supports the key findings of von
Neumann analysis for the implicit leapfrog.

• Expanding about separate time-levels is useful but requires
terms that account for synchronization.

• NIMROD’s two-fluid plane-wave responses at large Δt have been
verified by initializing with eigenmode information from von
Neumann analysis.

• Benchmarking with ELITE on ballooning-unstable equilibria is
complete.

• There is quantitative agreement, but computations near ideal
marginality need careful meshing.

• With effective preconditioning, Fourier representation is not an
impediment to parallel scaling.


