New Developments with M3D-C1

N.M. Ferraro, General Atomics M.S. Chance, J. Chen, S.C. Jardin, PPPL F. Delalondre, F. Zhang, RPI

> CEMM Meeting Chicago, IL Nov. 7, 2010

Resistive Wall Boundary Conditions

• Linear Non-Axisymmetric Response

• Nonlinear 3D

Resistive Wall Boundary Conditions

• Linear Non-Axisymmetric Response

• Nonlinear 3D

Thin-Shell Resistive Wall Boundary Conditions

$$\mathbf{B} = \nabla \psi \times \nabla \varphi - \nabla_{\perp} f' + F \nabla \varphi$$
$$F = F_0 + R^2 \nabla_{\perp}^2 f$$

- M3D-C1 advances ψ and F
- Essential (Dirichlet) condition on ψ :

$$\frac{\partial \psi}{\partial t} = -\frac{\eta_W}{\delta} R \left(\hat{\mathbf{t}} \cdot \mathbf{B} - \hat{\mathbf{t}} \cdot \mathbf{B}^v \right) - \frac{V_L}{2\pi}$$

• Natural (Neumann) boundary condition on *F*: $\int dV \frac{\mu}{R^2} \frac{\partial F}{\partial t} = -\oint dS \frac{\mu}{R} \frac{\eta_W}{\delta} \left(\frac{F}{R} - \hat{\varphi} \cdot \mathbf{B}^{\nu} \right) + \int dV \nabla \varphi \cdot \nabla \mu \times \mathbf{E}$

Vacuum Response Depends on Plasma Response Non-Locally

$$\begin{pmatrix} \hat{\mathbf{n}} \cdot \mathbf{B}^{\nu} \end{pmatrix}_{i} = \begin{pmatrix} \hat{\mathbf{n}} \cdot \mathbf{B} \end{pmatrix}_{i}$$

$$\begin{pmatrix} \hat{\mathbf{t}} \cdot \mathbf{B}^{\nu} \end{pmatrix}_{i} = M_{ij}^{t} (\hat{\mathbf{n}} \cdot \mathbf{B})_{j}$$

$$\begin{pmatrix} \hat{\varphi} \cdot \mathbf{B}^{\nu} \end{pmatrix}_{i} = M_{ij}^{\varphi} (\hat{\mathbf{n}} \cdot \mathbf{B})_{j}$$

i, j range over all boundary nodes

- VACUUM* calculates response matrices M in arbitrary geometry
- M is dense; all boundary nodes coupled to each other
 - Adds communication; hurts scalability
 - Not yet supported by SCOREC libraries in parallel

* M.S. Chance, Phys. Plasmas 4, 2161 (1997)

Resistive Wall Mode Test

- Equilibrium is no-wall unstable
- Stable with conducting wall at b=1

- Growth rate should transition from ideal-wall limit to no-wall limit as η_w/δ is increased.
- In the large-aspect limit, we know response matrix analytically

• Resistive Wall Boundary Conditions

• Linear Non-Axisymmetric Response

• Nonlinear 3D

Linear Non-axisymmetric Field Response with M3D-C1

- $B(t) = B_0 + B_1(t)$
 - **B**₀ is the axisymmetric equilibrium field
 - B₁(0) is the "vacuum field" from non-axisymmetric coils (I-coils).

Conducting-wall boundary condition

- B held constant in time on simulation domain boundary (approximately vacuum vessel)
- Simulation is time-advanced until the steady-state is reached.
- Final B₁ is applied field + plasma response.

Response Calculations Require Stable Equilibria

- In practice, equilibria are almost always weakly unstable to "numerical tearing" modes
 - Due mainly to lack of resolution around rational surfaces
 - No steady-state \rightarrow This invalidates response
- With MARS, this is usually not a problem since the response frequency is chosen a priori
- With initial value code, the equilibrium must be made to be stable to these spurious modes
 - Change equations: thermal diffusion, viscosity
 - Change equilibrium: rotation

Rotation & Dissipation Affect Stability & Screening

- Dissipative terms inhibit screening response
 - Magnetic islands form
- Equilibrium rotation enhances screening

Rotation Improves Core Screening; But Stochasticizes Edge

📌 GENERAL ATOMICS

Summary of Non-Axisymmetric Results

- We are able to calculate response with Spitzer resistivity, rotation, and two-fluid terms
- Initial-value calculations require dissipation to ensure stability
 - Dissipation inhibits screening
- Rotation enhances screening
 - Direction of rotation is important even in single fluid MHD
- Poster Tuesday morning

Unsplit Method Superior to Split Methods for Finding Linear Perturbed Equilibrium

- Split method has difficulty obtaining perturbed equilibrium
 - Persistent oscillations at low dissipation
 - More sensitive to δt Kinetic Energy 0.02 - Caramana method more 0.01 susceptible to (au_{A0}^{-1}) numerical 0.00 instability in 2 (unsplit) -Implicit. θ -Implicit (split) -0.01 under-resolved Caramana (split) cases -0.02

2000

4000

 $t (\tau_{AO})$

6000

0

8000

10000

• Resistive Wall Boundary Conditions

• Linear Non-Axisymmetric Response

Nonlinear 3D

M3D-C1 Uses Wedge-Shaped Elements in 3D

Tensor product

- Poloidal: reduced quintic (C^1)
- Toroidal: reduced cubic polynomials (C¹)
- Integration quadrature is also tensor product
- 6×2=12 DOFs/node
- 3D mesh is series of 2D planes
- Allows packing in toroidal direction

3D Matrix Has Cyclic Block-Tridiagonal Form

- Each plane corresponds to "block"
- Only nearest neighbor planes are coupled
- Presently this is solved without (further) preconditioning
- Typical problem: 10⁵ DOFs/block

3D Results: Alfven Wave

• With just 2 toroidal planes, ω is correct to 1 part in 10⁵

3D Results: Anisotropic Diffusion in Helical Field

Summary

- Resistive-wall boundary conditions are implemented
 - Not yet functional in parallel
- Linear 3D response successfully calculated with Spitzer resistivity, rotation, and two-fluid physics
- First fully-3D simulations have been run successfully
 - Much future work will involve solver strategies

