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Thin-Shell Resistive Wall Boundary Conditions

B=VyxVep-V f'+FVgp
F=F,+RV'f
e M3D-C'! advances ¥ and F
 Essential (Dirichlet) condition on ¥':

W _ My p(iB-i-B)- L
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 Natural (Neumann) boundary condition on F':
fdv u oF =—g§d5"‘”W( -¢-BV)+dech-wxE
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Vacuum Response Depends on Plasma
Response Non-Locally

(0-B") = (i B)

" i, j range over all
(E-BV). =M (n-B) boundary nodes

J

(¢B") = M(i-B)

i J
e VACUUM?* calculates response matrices M in
arbitrary geomeiry

e Mis dense; all boundary nodes coupled to each
other

— Adds communication; hurts scalability
— Not yet supported by SCOREC libraries in parallel

*M.S. Chance, Phys. Plasmas 4, 2161 (1997)
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Resistive Wall Mode Test
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e Growth rate should transition from ideal-wall limit
to no-wall limit as n,,/ 0 is increased.

* In the large-aspect limit, we know response
matrix analytically
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Linear Non-axisymmetric Field Response with

M3D-C1

* B(f) = Bo+B4(1)
- B, is the axisymmetric equilibrium field

— B,(0) is the “vacuum field” from non-axisymmetric coils
(I-coils).

e Conducting-wall boundary condition

— B held constant in fime on simulation domain boundary
(approximately vacuum vessel)

e Simulation is time-advanced until the steady-state is
reached.

e Final B, is applied field + plasma response.
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Response Calculations Require Stable Equilibria

* In practice, equilibria are almost always weakly
unstable to “numerical tearing” modes

— Due mainly to lack of resolution around rational
surfaces

— No steady-state =» This invalidates response

* With MARS, this is usually not a problem since the
response frequency is chosen a priori

e With initial value code, the equilibrium must be
made to be stable to these spurious modes

— Change equations: thermal diffusion, viscosity
— Change equilibrium: rotation
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Rotation & Dissipation Affect Stability & Screening

* Dissipative terms inhibit screening response
— Magnetic islands form

e Equilibrium rotation enhances screening
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Rotation Improves Core Screening;
But Stochasticizes Edge
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Summary of Non-Axisymmeiric Results

e We are able to calculate response with Spitzer
resistivity, rotation, and two-fluid terms

 [nitial-value calculations require dissipation to
ensure stability

— Dissipation inhibits screening

e Rotation enhances screening

— /I'_\)Ailr_leDc’rion of rotation is important even in single fluid

e Poster Tuesday morning
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Unsplit Method Superior to Split Methods for

Finding Linear Perturbed Equilibrium

* Split method has difficulty obtaining perturbed

equilibrium
— Persistent oscillations at low dissipation
— More sensitive to o't Kinetic Energy
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M3D-C1 Uses Wedge-Shaped Elements in 3D

 Tensor product
— Poloidal: reduced quintic (C')
— Toroidal: reduced cubic polynomials (C')
— Integration quadrature is also tensor product

e 6x2=12 DOFs/node

e 3D meshiis .
series of 2D [ ¢ .
planes Lot

* Allows packing
in foroidal
direction
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3D Matrix Has Cyclic Block-Tridiagonal Form

 Each plane corresponds to “block”
 Only nearest neighbor planes are coupled

* Presently this is
solved without ( . { ?
(further) 0]
preconditioning i

* Typical problem: \ [ J

105 DOFs/block &] Bl )
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3D Results: Alfven Wave

* With just 2 toroidal planes, w is correct to 1
part in 10°
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3D Results: Anisotropic Diffusion in Helical Field
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e Resistive-wall boundary conditions are
implemented

— Noft yet functional in parallel

* Linear 3D response successfully calculated
with Spitzer resistivity, rotation, and two-fluid
physics

* First fully-3D simulations have been run
successfully

— Much future work will involve solver strategies
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