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Scalable Parallel Solver Strategies

» Two-Part Overall Strategy

*  Physics-based preconditioning (PBP) is used to reduce the order of matrices and make them
diagonally dominant (Chacén). Already implemented.

e Multigrid provides a scalable parallel method for solving diagonally-dominant matrices.
» Coarsening and Refining Strategies

*  Geometric (GMG): coarser and finer grids. Not suitable for spectral elements.

*  Algebraic (AMG): choose largest matrix elements for coarsening.
PETSc/Hypre/BoomerAMG. Tested for spectral elements; unsuccessful.

*  Spectral Element (SEMG): Specifically designed to exploit spectral elements;
uses nest spaces of higher and lower polynomial degrees within each grid cell.

> Smoothers and Solvers

* Jacobi: Based on diagonal dominance of nodal basis representation. Used on all fine levels.
» Parallel Direct Solve: Currently used on the coarsest level. Limits scalability.
*  AMG: Will be tested as a scalable replacement for Parallel Direct Solve.

> References

 E.M. Ronquist and A. T. Patera, “Spectral Element Multigrid I: Formulation and Numerical
Results,” J. Sci. Comput. 2, 4, 389-406 (1987).

* Y. Madera and R. Mufioz, “Spectral Element Multigrid II: Theoretical Justification,” J. Sci.
Comput. 3,4,323-353 (1988).
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Abstract Multigrid Algorithm

Abstract Elliptic Problem

Hilbert space H, bilinear elliptic form a, linear form g.

Find v € H such that Yu e H, a(u,v)=g(u)

Nested Finite-Dimensional Subspaces

MiCMpC---CM; CH Simplest case j =1,2.
Find v; € M; such that Yu e M;, a(u,v;)= g(u)

Smoother

b(u,v) ~ a(u,v), but easier to solve, e.g. Jacobi smoother, b ~ Diag(a).

Multigrid V-Cycle
1. m/2 smoother iterations. Find S¢ € Ms such that
Yu e Ma, a(u,S¢ — ¢) = g(u) — a(u,p)

2. Coarse correction. Find ¢ € M1 such that

Yu e My, a(u,Sp— @) = g(u) — a(u, »0) C
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+
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3. m/2 smoother iterations.
Operator Expression
ut = 8™/2es™/ %0
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Convergence Theorem

Generalized Eigenvalue Problem

Vue My, a(u,¥;) = \;b(u, ¥;)
b

max

Rescale b — D<A <<~ <Ap=1
Nesting Hypothesis
The fine space is the span of all P eigenvectors, Ma = {U1,Wsy,... Up}.

The coarse space is the span of the lowest p eigenvectors, M = {¥1, Vg, ..., U, }.

Convergence Theorem

Let ¢/ = u — u/, the error after the jth iteration.

a(el,e!) < (1 - )\p+1)2m a(e®, %)

Interpretation

The largest “rough” eigenvalues, closest to 1, converge rapidly.
The smallest “smooth” eigenvalues, closest to 0, converge slowly.

The coarse correction eliminates the smooth eigenvalues
by transferring them to a coarse grid and solving exactly.
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Coarsening and Refining

Lobatto Nodal Basis Functions

u(z) = wioi(z), ze(—-1,1), 21=0,...,n

a@) =] (£22). @-ePOve) =0

o §&i— &
Coarsening and Refining Operations
u™(z) = Zu{"az""’(m), u"(z) = Zu?a?(m), m <n
i=0 i=0

g =a&G), uw' =Gty

1=0,....m, 3=0,...,
¢t ={Cy"}y, um=C""a"

an — (Cmn)T’ un — anun

2010 APS/DPP Meeting, Glasser & Lukin, Slide 4




Lobatto Nodal Basis Functions

Coarse: np =4 Fine: np = 8
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Coarsener: evaluating fine basis functions at coarse nodes.
Refiner is the transpose of the coarsener
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1D Stiffness Matrix

Coarse and Fine Stiffness Matrices

1 Pay)
0“v Ou Ov
(u, Lv) = —/_1 dmum = / d:ca% = u;Aijv;

m o_ Bamda .o
Az‘j:/ dr—— 9 e ,7=1,...,m

/ g 2% 0

Or Oz’

m < n, m = coarse, n = fine.
Coarsening the Stiffness Matrix

Given the fine stiffness matrix,
we can coarsen it with the refining matrix R.

u™mA™y™m nm uMm AT, R1m,,m
ut A vj = RyMu! ,R i
an n ;}m’ Am — (an)TAanm
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Analytical Test Case

1D Poisson Equation

—u"(z) = g(x), wu(zr)=0atxz==l1

Convergence Theorem
Using the Lobatto nodal basis functions of degree IV,
with the scaled diagonal matrix as the smoother,

convergence for one element and 2 levels is given by

a(u —ut,u—u') = palu —u’,u —u)

N—|-2 2m
p=11-—=
2(N — 1)

p<1for N >2
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Implementation of SEMG in the 2D HiFi Code

>

>

YV V V VY

Y

SEMG is implemented in a Fortran 95 module, 3300 lines of new code
written and tested.

Uses PETSc library for distributed parallel operation and high-level matrix
operations.

Fortran 95 derived types are defined for multigrid levels, diagonal blocks
matrices, scatter contexts between native and PETSc vectors, and a full
SEMG problem.

Coarsening and refining use low-order (np+1) matrices C and R.
Scaled diagonal Jacobian smoother uses low-order (nqty) matrix D.
Jacobian scale factor, largest eigenvalue, is computed by power iteration.

Recursive Fortran 95 subroutine calls itself at successively coarser levels,
with a full parallel direct solve on the coarsest level.

Highly modular code structure, facilitating easy modification, testing, and
improvement.
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Weak Parallel Scaling Study: Test Case

2D Poisson Equation
—V?u(z,y) = p(z,y)
Homogeneous Dirichlet Boundary Conditions
u(0,3) = u(1,y) = u(z,0) = u(z,1) = 0

Random Source Term and Initial Conditions
Mmax Mmax me ny
plz,y) = mzzl nzzl Prmn SN (T) sin (7)

=SS i (75 sin (Y
u(z,y) mz::l nzzl umnsm( - )sm( - )
Pmn and Upy,, random
Weak Scaling Study
Hold the work per processor fixed.

Successively double ng, ny, Mmax, and nmax
and quadruple the number of paralllel cores.

V-cycle: polynomial degree n, = 8,4,2,1,2,4,8

Jacobi iterations per multigrid level = 3
Multigrid cycles to 107 convergence = 27
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Weak Parallel Scaling Study: Random Solutions
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Time to Solution (Wall Seconds)
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Weak Parallel Scaling Study: Results

~®Time to Solution

“®=Degrees of Freedom

Log2 Cores
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Summary and Future Work

» Formulation and implementation of SEMG are general.
» Tested for scalability on the 2D Poisson equation.

» Improvements to be studied:

* More scalable alternative to the direct coarse solve, e.g. AMG.

* More general boundary conditions.
» Following this, it will be tested on:

* Simple linear 2D wave equation.
* Ideal MHD waves in a periodic plane.

* GEM challenge problem.

» After completion of 2D development, it will be ported to the 3D
HiFi and M3D-C1 codes. The latter will require the development
of a different coarsener.
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