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< Problem: modeling mitigation/control of tearing modes &
(magnetic islands) by electron cyclotron current drive

e|Islands cause degraded confinement and the

possibility of disruption. i DIII-D shot 122638
*Experiment: Control systems use ECRF g:PMMMWW
to drive currents that suppress the islands. 4 j“
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*Numerically: How can we optimize the 1B, (G) 2/1 mode
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Figure from Prater et al., Nucl. Fusion 47, 371 (2007).
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Problem formulation: How to include RF physics
in MHD simulations
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eStandard MHD closure — assume distribution function is local Maxwellian + kinetic
distortion; kinetic distortion moments yield stress tensor 1 and heat flux q.

*Kinetic distortion equation will include RF terms on the same footing as other
thermodynamic drives (temperature/flow gradients):
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*Fisch-Boozer and Ohkawa effects
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Fisch-Boozer Currents
*RF interaction increases electron Vi
eLower collisionality (~1/v*3)
*Net momentum transfer between
ions and electrons; current

(a) Fisch-Boozer

Figure from R. Prater,
Phys. Plasmas 11, 2349 (2004). e —~—

Where did the RF physics go?
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Ohkawa Currents
*RF interaction moves particles across
trapped-passing boundary
*Symmetric detrapping, asymmetric

trapping; current (opposite direction)
(b) Ohkawa
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operator: New numerical schemes developed

Need to relate:
*Fluid equations

— eIndividual ray equations

= y eq
% *Collective (quasilinear) effects of
% ray bundle

*Increased ray density = lower power content,
smaller ray volume. .

*Power/(area-perpendicular-to-flow) ratio
appears in QL terms at each ray point

*QHULL computational geometry software




ﬁ Coupling multiple codes to get at the physics we need

*Getting the quasilinear diffusion coefficients into NIMROD is a multistep
process using several codes and moving several files.

*Control system is goal of this work

IPS: software used to glue things together

GENRAY
preprocessor

NIMROD
(MHD)

Synthetic Plasma
Control System

GENRAY
(RF)

QLCALC
(diffusion
coefficients)

QHULL
(computational
geometry)




X Rough outline of control system logic

it

/

Read NIMROD data
(synthetic Mirnov)

Yes

No

\
Find O-point_|——{IUTnONI

No

Calculate new Send new
GENRAY input—>| inputs to
parameters GENRAY

Hierarchy of control systems desired:
“Dumb system”: Mirnov coils only (for detection)
Experimental mimicking system: Implement system similar to DIII-D
Optimized control system: What we want to provide
“Perfect system”: Hit the O-point exactly (what we are doing in this talk)



% !\/ Initial control system tests show moderate stabilization
when RF is applied

hMagnetic energy vs. time, 22 modes
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*\When mode amplitude exceeds threshold, PCS injects ECCD at island O-
point; island shrinks.

*Mode growth resumes when ECCD is shut off.
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X Perturbed electron temperature evolution with RF
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/\/ Mode detection is carried out using synthetic Mirnov
coil diagnostics in NIMROD
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«Extract NIMROD data with python; fit
data; extract amplitude, growth rate,
and toroidal rotation frequency.

*n=1 tearing mode
~ A exp(iwt+yt+o)



K/ “Perfect” control system - rational surface positions and

magnetic island O-points can be calculated exactly

*From NIMROD, get y(R,Z) and q(y) — calculate (R,Z) coordinates where
q(w) = 2 (or other desired value)

*Field line traces at these coordinates — O-points
(many serial IPS jobs).




< GENRAY input parameters can be adjusted to direct

RF power to island O-point, in a “perfect” PCS

*Potential issues:
Rotation:
-How to hit island as it rotates.

ECCD modifications:
-Rational surfaces and islands
move in presence of RF (2010
PoP paper).

Normalized RF and current amplitudes

Size of RF deposition region:
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Using Vislt to help sort out what’s going on — good
visualization becoming increasingly important

Electron temperature contours
prior to RF deposition

Electron temperature contours
as RF deposition ramps up suddenly



Further work on the PCS algorithms is needed to
optimize the mode stabilization

_ _ _ _ _ *RF deposition slightly
o Fourier components of magnetic energy (~island width) vs. time outside the rational surface

gives rapid initial stabilizing
effect
econsistent with
observations from 2010
PoP paper).

eInitial reduction doesn’t
1 continue; instead, mode
energy plateaus.

0 0.01 0.02 0.03 0.04 0.05 0.06 ° e|nitial efforts to reduce
plateau height have not
been successful, though
linear growth has ceased.

*Moving towards more heuristic adjustments to current deposition



Temporal discretization of coupled system needs to be
considered: Speed of injection angle needs to be resolved

X Magnetic Energy vs. t




2N Present status and plans

*Developments to the control system are ongoing; a pragmatic approach to mode
suppression (like experimentalists use) is probably a better approach going forward

|PS capabilities in managing coupled RF/MHD simulations (and other complex workflows)
vastly simplify things for the user.

*Vislt capabilities are very useful as we try to figure out what’s going on in the simulations.

*Dylan Brennan (U. Tulsa) has provided higher-8 equilibria near the NTM stability boundary
so that we can move to more experimentally relevant regimes — a work in progress

*Paper in progress: computational methods, translating between the various physics objects
in this problem (MHD fluids, individual RF rays, RF ray bundle).

*Plan to work with DIII-D experimentalists in coming months, to develop control system
logic and synthetic diagnostics consistent with experiments.



