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The NIMROD numerical dispersion relation is not the
expected result.
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Now that I may have your attention, a shameless
advertisement.

I Tuesday at 3:30pm, JI2 #4: �First-order FLR e�ects on
magnetic tearing and relaxation in pinch con�gurations�

Figure: Billy Mays
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Back to diamagnetic-drift tearing: motivation.

I Connect modeling of drift-tearing with full extended-MHD
equations to `drift' reduced models.

I The analytics are often in slab geometry, computation provides
the ability to analyze experimental con�gurations after model
veri�cation.

I Tokamak RMP theory: important e�ects from Waelbroeck
[PoP 2003]

I KAW/semi-collisional e�ects: covered through NIMROD
benchmark with Ahedo & Ramos [NF 2009].

I Diamagnetic-drift tearing, this work: Coppi [PoF 1964/65],
Drake & Lee [PoF 1977], Biskamp [NF 1978], Hassam [PoF
1980], Drake et al. [PoF 1983] etc.

I Viscosity and RMP interaction: future work.
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Disclaimer: this work is still preliminary and subject to
change.

(Under construction - like ITER)
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We choose a small ion skin depth to avoid KAW/whistler
e�ects.

I Our cases are based o� the benchmark with Ahedo and Ramos [2009].
I Cases use kρs = 0.0006 and kdi = 0.002 and will vary n′0 to vary ω∗.
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We use large-guide �eld sheared slab equilibria, but add a
pressure pro�le.

I The parameters are chosen based o� the benchmark with
Ahedo and Ramos.

I εB = By∞/Bz0 = 0.02
I kLB = 0.76, ∆′/k = 1.46, a/LB = 6, Sk = 3.5× 107,
Pm = 0, β = 0.1

I The pressure pro�le gradient is the result of a density gradient
and a �at temperature pro�le to avoid ITG-like modes.

n0 (x) = n0

(
1 +

n1
n0

tanh

[
x

LB

])
I Each case is run twice: once with a single-�uid Ohm's law to

ensure the outer solution (∆′) is not signi�cantly modi�ed by
the pressure pro�le, and again with the generalized Ohm's law.

I No gyroviscosity or mean �ow (for now).
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The NIMROD numerical dispersion relation is not the
expected drift-tearing relation (disp2).
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Single-�uid cases with a pressure gradient exhibit a
numerical instability without small particle/thermal di�usion.

I Small particle and thermal di�usions are used to avoid these
numerical problems, Dnµ0/η = χ⊥µ0/η = 0.266.

I With the small di�usion, the expected MHD growth rate is
observed for density gradient values up to LBn

′
0/n0 = 0.16 .

I Also tried (without success): density hyper-di�usivity,
increased resolution/smaller time-step, no density equation
evolution, small viscosity.

I Results indicate numerical instability is sensitive to the
pressure evolution.
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Reduced models typically consider the parallel-vorticity
equation and the parallel Ohm's law.

I The goal is to capture slow instability dynamics after
elimination of the fast waves. See, for example, Strauss [PoF
1976/77] or Hazeltine et al. [PoF 1985]

I Parallel vorticity equation is straight forward,
b̂0 · ∇ × [momentum eqn].

I Parallel Ohm's law: Using a �ux representation,
B = B‖b̂0 + B0 ×∇ψ, where ψ ∼ A‖.

I b̂0 · [E = −∇Φ− ∂A/∂t]→ E‖ = −ik‖Φ−B0∂ψ/∂t.
I Provides and equation for the evolution of the �ux function.
I Generalized Ohm's law provides E‖.
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A straight-forward analogue to the parallel Ohm's law is the
radial induction equation.

I With �ux rep., B̃r = ik⊥B0ψ̃.

I Thus r̂ ·
[
∂B̃
∂t = −∇×E

]
→ γB0ik⊥ψ̃ = −ik⊥Ẽ‖ + ik‖Ẽ⊥ or

γB0ψ̃ = −Ẽ‖ +
k‖

k⊥
Ẽ⊥

I Should produce the same result as the parallel Ohm's law:

γB0ψ̃ = −Ẽ‖ − ik‖Φ̃

I The relevant comparison is between −Ẽ⊥/ik⊥ and Φ̃.
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The �ux equations agree term by term with resistive MHD.

I Using tearing layer ordering, ψ̃′′ >> kψ̃′ ∼ k2ψ̃ for
∆′/k ∼ O (1) and k‖ ' k′‖x where kx << 1, and a

stream-function for ion velocity ṽ = b̂0 ×∇φ̃+ ṽ‖b̂0.

Ẽ‖ = ηJ̃‖ ' −B0ηψ̃
′′

Ẽ⊥ = −ik⊥φ̃B0 + ηJ̃⊥

γB0ψ̃ = −Ẽ‖ +
k‖

k⊥
Ẽ⊥ ' B0ηψ̃

′′ − ik‖φ̃B0

⇒ γψ̃ = −ik‖φ̃+ ηψ̃′′

I The electrostatic potential is related to the stream-function
through the E×B �ow via Ẽ⊥:

ṽE×B =
Ẽ×B0

B2
0

' −∇Φ̃

B0
× b̂0 ' −∇φ̃× b̂0 .
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The comparison with a generalized Ohm's law is not as clear.

Ẽ‖ = ve0⊥B̃r −
ik‖p̃e

n0e
+ ηJ̃‖

Ẽ⊥ = −ik⊥φ̃B0 − ve0‖B̃r −
J̃rB0

n0e
− ik⊥p̃e

n0e
+ ηJ̃⊥

I Radial induction equation:

γB0ψ̃ = −Ẽ‖ +
k‖

k⊥
Ẽ⊥

⇒ (γ + ik⊥ve0⊥) ψ̃ = −ik‖φ̃− ik‖
B̃‖

µ0n0e
+ ηψ̃′′

I Parallel Ohm's law:

(γ + ik⊥ve0⊥) ψ̃ = −ik‖
Φ̃

B0
+

ik‖p̃e

B0n0e
+ ηψ̃′′
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Traditional drift-tearing analysis manipulates the parallel
Ohm's law into a simpli�ed form.

(γ + iω̂∗e) ψ̃ = −ik‖
Φ̃

B0
+

ik‖p̃e

B0n0e
+ ηψ̃′′

I After �nding expressions for Φ̃ and p̃e,

⇒ (γ + iω̂∗e) ψ̃ = −
(

1 +
iω̂∗e
γ

)
φ̃+ ηψ̃′′

⇒ (γ + iω̂∗e)
3 γ (γ + iω̂∗i) = γ5MHD

I We use ω̂∗e = k⊥ve0⊥ and ω̂∗i = k⊥vi0⊥.

14 / 23



What is the contribution from B̃‖ to the radial induction
equation?

(γ + iω̂∗e) ψ̃ = −ik‖φ̃− ik‖
B̃‖

µ0n0e
+ ηψ̃′′

I In general, let the contribution be ∼Mφ̃:

(γ + iω̂∗e) ψ̃ = −ik‖ (1 +M) φ̃+ ηψ̃′′

⇒ (γ + iω̂∗e)
4 (γ + iω̂∗i)

(1 +M)
= γ5MHD

I Standard drift tearing: M = iω̂∗e/γ.

I Another limit, M = 0 ⇒ (γ + iω̂∗e)
4 (γ + iω̂∗i) = γ5MHD .
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The relations disp1 and disp2 correspond to M = 0 (no B̃‖
contribution) and M = iω̂∗e/γ (standard D-T).
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Consideration of the parallel induction equation shows

drift-like terms (∼ n′0φ̃).

(γ + ik · ve0) B̃‖ = −B0 (∇⊥ · ṽ) +
(ik ·B0)

µ0n0e
B0ψ̃

′′ +
η

µ0
∇2B̃‖

+
(
b̂0 ·B′0

)
ik⊥

[
φ̃+

B̃‖

µ0n0e
+
k‖

k⊥

B0ψ̃
′

µ0n0e

]

−
(
n′0
n0

)2 (ik⊥)2 (Ti0 + Te0) φ̃

e (γ + ik · v0)
+
ik⊥n

′
0 (ΓTe0 + Ti0)

n0e (γ + ik · v0)
∇ · ṽ

I The b̂0 ·B′0 ' −p′0µ0/B0 through equilibrium considerations.

I We have used the linear continuity and energy equations
without di�usion to eliminate ñ and p̃e.

I We ignore the compressive (∇ · ṽ), KAW/Whistler ∼ ψ̃′′, and
di�usive terms for now.
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Including only `drift' contributions gives an algebraic

expression for B̃‖

(
φ̃
)
.

(γ + ik · ve0 + ω∗e + ω∗i) B̃‖

' −

[
ik⊥

p′0µ0
B0

+

(
n′0
n0

)2 (ik⊥)2 (Ti0 + Te0)

e (γ + ik · v0)

]
φ̃

I Plugging this into the radial induction equation we �nd

M =
iω∗
γ
− 2

β

ω2
∗
γ2

I Where ω∗ = ω∗i + ω∗e, the iω∗/γ term is from ṽe ×B0, and
the term ∼ ω2

∗ results from ∇p̃e and ñ/n20e contributions.

(γ + iω̂∗e)
4 (γ + iω̂∗i)

(1 +M)
= γ5MHD (1)
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This dispersion relation with B̃‖ contributions ∼ n′0 is not
descriptive of the computations.

(γ + iω̂∗e)
4 (γ + iω̂∗i)(

1 + iω∗
γ −

2
β
ω2
∗
γ2

) = γ5MHD

I There are now seven roots (spurious roots?) and the
most-unstable value of γτA becomes large relative to γMHDτA
at large values of ω∗τA.
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Grasso et al. [2001] includes the e�ect of particle di�usivity
in the D-T parallel Ohm's law analysis.

I They �nd three regimes:

I standard D-T: Dµ0/η << (ω∗τA∆′/kεB)
2/3

I intermediate particle di�usion:

(ω∗τA∆′/kεB)
2/3

<< Dµ0/η << S1/2 (ω∗τA)
2/3

ε
−1/6
B

I di�usive regime: S1/2 (ω∗τA)
2/3

ε
−1/6
B << Dµ0/η

I γMHD = γ1/5 (γ + iω∗)
4/5 (γ/iω∗)

1/4

I similar to solution with M = 0.

I For our cases:

I (ω∗τA∆′/kεB)
2/3 ' 1.3× 10−3 − 1.3× 10−2

I Dµ0/η ' 0.27
I S1/2 (ω∗τA)

2/3
ε
−1/6
B ' 0.86− 8.6

I Even small di�usion matters! Are our cases beginning to
transition from a di�usive to standard-DT regime?
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Future drift-tearing directions

I Plot contributions to the parallel and radial induction
equations by term.

I Investigate the e�ects of di�usion and compression in B̃‖.

I Run cases with Hall-MHD and no contribution from ∇p̃e.
I Add gyroviscosity and equilibrium �ow.

I Investigate the single-�uid numerical instability with pressure
gradient: is there a method alternative to particle and thermal
di�usion for mitigation?
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Conclusions

I Drift tearing computations with extended-MHD and small
thermal and particle di�usion do not reproduce the standard
drift-tearing behavior.

I It appears even small amounts of di�usion has a large e�ect.
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Eigenfuction - ω∗τA = 1.6× 10−5

1/n0eµ0 = 0.01
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