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The NIMROD numerical dispersion relation is not the
expected result.
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Now that | may have your attention, a shameless
advertisement.

» Tuesday at 3:30pm, JI2 #4: “First-order FLR effects on
magnetic tearing and relaxation in pinch configurations”

Figure: Billy Mays
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Back to diamagnetic-drift tearing: motivation.

» Connect modeling of drift-tearing with full extended-MHD
equations to ‘drift’ reduced models.

» The analytics are often in slab geometry, computation provides
the ability to analyze experimental configurations after model
verification.

» Tokamak RMP theory: important effects from Waelbroeck
[PoP 2003]

» KAW/semi-collisional effects: covered through NIMROD
benchmark with Ahedo & Ramos [NF 2009].

» Diamagnetic-drift tearing, this work: Coppi [PoF 1964/65],
Drake & Lee [PoF 1977], Biskamp [NF 1978], Hassam [PoF
1980], Drake et al. [PoF 1983] etc.

» Viscosity and RMP interaction: future work.
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Disclaimer: this work is still preliminary and subject to
change.

(Under construction - like ITER)
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We choose a small ion skin depth to avoid KAW /whistler
effects.

Growth rate vs. ion sound gyroradius
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> Our cases are based off the benchmark with Ahedo and Ramos [2009].
> Cases use kps = 0.0006 and kd; = 0.002 and will vary ng to vary ws.
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We use large-guide field sheared slab equilibria, but add a
pressure profile.

>

The parameters are chosen based off the benchmark with
Ahedo and Ramos.

> €3 = Byoo/Bzo = 0.02
» kLp =0.76, A'/k =1.46, a/Lz =6, S = 3.5 x 107,
P,=0,8=0.1

The pressure profile gradient is the result of a density gradient
and a flat temperature profile to avoid ITG-like modes.

oty (1 [ ]

Each case is run twice: once with a single-fluid Ohm’s law to
ensure the outer solution (A’) is not significantly modified by
the pressure profile, and again with the generalized Ohm’s law.

No gyroviscosity or mean flow (for now).
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The NIMROD numerical dispersion relation is not the
expected drift-tearing relation (disp2).
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Single-fluid cases with a pressure gradient exhibit a
numerical instability without small particle/thermal diffusion.

» Small particle and thermal diffusions are used to avoid these
numerical problems, Dy, uo/n = x1po/n = 0.266.

» With the small diffusion, the expected MHD growth rate is
observed for density gradient values up to Lgn(/no = 0.16 .

» Also tried (without success): density hyper-diffusivity,
increased resolution/smaller time-step, no density equation
evolution, small viscosity.

» Results indicate numerical instability is sensitive to the
pressure evolution.
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Reduced models typically consider the parallel-vorticity
equation and the parallel Ohm’s law.

» The goal is to capture slow instability dynamics after
elimination of the fast waves. See, for example, Strauss [PoF
1976/77] or Hazeltine et al. [PoF 1985]

» Parallel vorticity equation is straight forward,
bg - V x [momentum egn].
» Parallel Ohm’s law: Using a flux representation,
B= BHbQ + Bg x V), where ¢ ~ A”
> by [E=—V® —0A/0t] —» B = —iky® — Bydyp/ot.
» Provides and equation for the evolution of the flux function.
> Generalized Ohm's law provides E.
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A straight-forward analogue to the parallel Ohm'’s law is the
radial induction equation.

With flux rep., B, = ik:LBoz/;.

Thus 7 |98 =~V x B| — yBoik 0 = ~ik1 B + iky B or

v

v

v

Should produce the same result as the parallel Ohm’s law:

v

The relevant comparison is between —EJ_/ikJ_ and .
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The flux equations agree term by term with resistive MHD.

» Using tearing layer ordering, 9" >> ki ~ k21 for
A'Jk ~ O (1) and k| =~ kl’lx where kz << 1, and a

stream-function for ion velocity v = by x Vé + 17Hf)0.
Ej = nJj =~ —Bon}"
E, =—ik $By+nJy

- - k
YBoyp = —E) + kH E| ~ Bon}" — ik ¢ By

= v = —ikyp + n)”
» The electrostatic potential is related to the stream-function
through the E x B flow via E:

E x B o
ﬂ:—v—xbg_—VQbeo

VExB =
. B2 By



The comparison with a generalized Ohm’s law is not as clear.

1k Pe -
[ )

E|| = veOJ_BT -
nope

jrBO _ Z‘kJ_lje +
npe npe

E| = —iky$By — veo By — n

» Radial induction equation:

k
By = —E|| + k“

. - B -
= (v +ikiveor) ¥ = —iky¢ — iku*” + "
Honope

» Parallel Ohm'’s law:

~ ¢ Z7<?||I5e

(v +ik1veor) Y = —Zku + "

Bonoe
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Traditional drift-tearing analysis manipulates the parallel
Ohm'’s law into a simplified form.

ikyp 5
|| Pe + nib”

N
(7 + Zw*e) ¢ = _ZkH BfO + Bonoe
» After finding expressions for ® and pe,
1Wse
~

:»wm*ewz—(w )¢3+mz3~

= (v+ iw*e)?’ v (7 4 i) = ’Y?MID

> We use Wye = k| Vep) and Oy = k050
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What is the contribution from BII to the radial induction
equation?

A ~ T . 13” "l
(7 + ise) Y = ik — %knm +ny

> In general, let the contribution be ~ ng:
(7 + ise) ¥ = —iky (1 + M) ¢ + ni)”

(7 + i) (v + i0i) _ 2
(1+M) MHD
» Standard drift tearing: M = i, /7.

> Another limit, M =0 = (v + idue)* (7 + i0ui) = V35 -
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The relations displ and disp2 correspond to M = 0 (no B”
contribution) and M = iw,. /7y (standard D-T).
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Consideration of the parallel induction equation shows
drift-like terms (~ ngo).

N R k-B N .
(')’ + ik - VeO) B” = —By (VJ_ . V) + uBo@b” + lsz”
HoTo€ Ho
. . B ky Byl
+ (bo-BY) ik [+ S IR L
ponoe ki ponoe

B <n{)> 2 (iky)® (Too + Teo) & | iking (DTe + To)g .

ng e (v +ik - vp) noe (v + ik - vo)

» The by - B, ~ —pypo/Bo through equilibrium considerations.

» We have used the linear continuity and energy equations
without diffusion to eliminate 7 and p..

» We ignore the compressive (V - v), KAW/Whistler ~ ¢, and
diffusive terms for now.
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Including only ‘drift” contributions gives an algebraic
expression for BH (gzg)

(7 + ik - Ve0 + Wye + w*i) B”

Z.hpf)ﬂo n <nf)>2 (ik1)* (Tio + Teo)
By ng e(y+ik-vp)

~

» Plugging this into the radial induction equation we find

_ Wy 2 wf
v B
» Where w, = wyj + Wye, the iw, /vy term is from v, x By, and

the term ~ w? results from Vp, and 7i/n3e contributions.

N 4 .
o+ Zoﬁel E\Z,;_ i) = '71?4HD (1)
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This dispersion relation with BH contributions ~ ny is not
descriptive of the computations.

(7 + i) (v + i) 5

5 2 = TMHD
(142 - 3%)

» There are now seven roots (spurious roots?) and the
most-unstable value of v74 becomes large relative to vy pp7a
at large values of w,74.
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Grasso et al. [2001] includes the effect of particle diffusivity

in the D-T parallel Ohm’s law analysis.

» They find three regimes:

» standard D-T: Dug/n << (w*TAA'/k:eB)Q/3
» intermediate particle diffusion:
(w*TAA’/k63)2/3 << Dug/n << S'/2 (w*TA)2/3 6;1/6

> diffusive regime: S'/2 (w*TA)2/3 651/6 << Dug/n

> ymap =77 (v + iw*)4/5 (7/11"-’*)1/4
» similar to solution with M = 0.

» For our cases:

b (wetaA Jkep)?® ~ 1.3 x 1073 — 1.3 x 1072
> Dpo/n =027
> SV (w,ra)*P €50 ~0.86 — 8.6

» Even small diffusion matters! Are our cases beginning to
transition from a diffusive to standard-DT regime?
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Future drift-tearing directions

» Plot contributions to the parallel and radial induction
equations by term.

> Investigate the effects of diffusion and compression in BH'
» Run cases with Hall-MHD and no contribution from Vp,.
» Add gyroviscosity and equilibrium flow.

» Investigate the single-fluid numerical instability with pressure
gradient: is there a method alternative to particle and thermal
diffusion for mitigation?



Conclusions

» Drift tearing computations with extended-MHD and small
thermal and particle diffusion do not reproduce the standard
drift-tearing behavior.

» It appears even small amounts of diffusion has a large effect.
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Eigenfuction - w,74 = 1.6 x 1077
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