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Neoclassical tearing mode (NTMs) 
4 

 Density, temperature, pressure, etc. 
tend to equilibrate across an island 
width 

 Difference in current at O-point and 
X-point can drive island growth 
 Without these gradients, there can be 

no bootstrap current within the island 
 Bootstrap current at the X-point can 

drive island growth 

 Large islands allow hot, dense 
plasma near core to be transported 
outward, reducing confinement 

 Modifications to magnetic topology 
can result in macroscopic instability 
and disruption 

Images taken from The 

Theory of Toroidally Confined 

Plasmas by R. White, 2006 

 



NTM stability modeling 
5 

 NTM stability place a severe limit on maximum β 

 NTMs incorporate a lot of physics  

 Cause:  Neoclassical kinetic theory 

 Effect:  MHD destabilization 

 Requires a hybrid model 

 High-fidelity simulations required for prediction, 
control, avoidance, and understanding of NTMs 

 Especially important for ITER operation, where very 
few disruptions can be tolerated 

 



Framework for hybrid solver 

Solve the drift kinetic 
equation in a general, 
3D, toroidal geometry 
for the ion and electron 
perturbed distribution 
functions in parameter 
regimes relevant to ITER 
and reactors and couple 
to an MHD solver 

Solve the drift kinetic 
equation in a 2D, large 
aspect ratio tokamak for 
the neoclassical, 
electron perturbed 
distribution function  
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What’s needed Current work 
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1 Ramos, J.J.  2010.  Phys. Plasmas.  17, 082502. 



Electron DKE 
8 

 Derived from average of Fokker-Planck equation over gyromotion 
 Determines form of    ,     , and 

 Collision operators taken in their linearized Landau form 

 Two expansion parameters for high-temperature fusion plasmas                    

 

 Four common subsidiary parameters 

 

 Equations maintained to third order in 
 Scale at which collisional dynamics first become important 

 Terms of order           will be kept, but       dropped 

 Equivalent to neoclassical electron banana regime 

 
 



Stationary, Axisymmetric Equilibrium 
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 Nested flux surfaces labeled by  

 Fields: 

 

 Lowest-order fluid equations result in 



Resulting DKE 
10 

 Given these assumptions, it is convenient to write 

 

     where          and          have analytic forms 

 Then, the DKE for      can be reduced to 

 

 
where 



Source Term 
11 

    Source contains Ohmic drive, interaction with ion 
flow, and pressure and temperature gradient 
bootstrap drive 



Solubility Condition 
12 

 Standard solution method for neoclassical theory 

 

 

 DKE becomes 

 Solubility condition: 

 Contour integrals taken along one poloidal turn of 
magnetic field line 



Integral over Collision Operator 
13 

where 
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Expansions 
15 

 Expand Rosenbluth Potentials in Legendre and 
Fourier series 

 

 

 Then expand        ,          , and            in finite 
elements in     and     , as necessary 



Expanded Form 
16 



Galerkin Method 
17 

 Take the inner product of the previous equations with 
each finite element 

 Use linear tent functions: 
 Only overlap with their  

two nearest neighbors 
and themselves 

 DKE becomes tridiagonal 
in both     and 

 Rosenbluth Potential eqs.  
are tridiagonal in     and 
dense in  

0 

1 

i-2 i-1 i i+1 i+2 



Block Tridiagonal Algorithm 
18 

 Since all equations are tridiagonal in     , we rewrite 
the coupled set as a block tridiagonal matrix eq. 

 

 Size of each block matrix is  

 Given appropriate boundary conditions, there exists a 
straightforward algorithm to solve for 

 Computation time required is O(                                    )  



Boundary Conditions 
19 

 For 

   

   

    

 For 

                     must be regular  

   

                             requires boundary layer (future work) 
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Convergence (1) 
21 

Velocity 
Finite 

Elements 

Lambda 
Finite 

Elements 



Convergence (2) 
22 

Legendre 
& Fourier 

Terms 

Maximum 
Velocity 
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Example Distribution Functions 
24 

Ohmic Drive Density-Gradient Drive 



Calculating Current 
25 

 Need part of distribution function that is odd wrt 

 

 Requiring                          , we find that 

 

 Then we use  
 



Ohmic Drive Conductivity 

 On-axis: 

  

 Trapped particles carry 
no current 
 To lowest order, expect 

conductivity to decrease 
linearly with the trapped 
particle fraction 

 

 Sauter analytic fit1 

26 

1 Sauter, O et al. (1999) Phys. Plasmas: 6,7. 



Density-Gradient Bootstrap Current 

 Expect zero current  
for              

 To lowest order, 
current should 
decrease linearly with 
trapped particle 
fraction  

 Sauter Analytic fit 
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Summary 
29 

 A code has been written to solve for the 
component of the non-Maxwellian electron 
distribution function necessary to compute the 
current in an axisymmetric toroidal plasma 

 Code demonstrates good convergence 

 Ohmic and density-gradient sources have been 
benchmarked against the Sauter analytic fits for a 
large-aspect ratio expansion equilbrium 



Future Work 
30 

 Short Term 
 Complete implementation of temperature-gradient driven 

source 

 Generalize geometry to use solution from Grad-Shafronov solver 

 Benchmark against NEO and NCLASS 

 Implement simple (i.e., lowest-order) ion code 

 Couple with MHD code (e.g., M3D-C1) 

 Long Term 
 Generalize to 3D Geometry 

 Develop ion theory to appropriate ordering 

 Implement fully 3D, coupled ion-electron code 

 Couple with MHD code (e.g., M3D-C1) 

 Perform NTM and sawtooth studies 
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Coefficient functions 
33 

 Reference frame of the macroscopic flow 

   

   

 

   

  

 where 



Electron –Electron Collision Operator 
34 

where 



Electron-Ion Collision Operator 
35 



Gyro-average of the collision 
operators 

36 

 Maxwellian-test part of        has analytic solution 

 

 

 

 

 

 And the remainder is simple 

 

Or  

where 


